TO: ROBO Surveillance Panel FROM: Justin Mills – ROBO SP Chair DATE: June 17, 2019 SUBJECT: Equivalence of concentrated and diluted nitrogen dioxide in ROBO (ASTM D7528)

Overview: Nitrogen dioxide, the primary catalyst used in ASTM D7528: Standard Test Method for Bench Oxidation of Engine Oils by ROBO Apparatus, was discontinued by Sigma-Aldrich in 2017 – citing shipping issues related to increased DOT standards. In order to ensure continuity and long term viability of the ROBO test, the ROBO Surveillance Panel investigated the use of 1.13% nitrogen dioxide diluted in air as a suitable alternative to liquid (high purity) nitrogen dioxide. Based on data generated at Labs AM and G, the ROBO Surveillance Panel agrees that this alternative approach offers equivalency.

In the interim, two additional suppliers of liquid (high purity) nitrogen dioxide have been identified: Electronic Fluorocarbons and SpecGas.

Objective: Establish dilute nitrogen dioxide (1.13% NO₂ in air) as a suitable alternative to concentrated nitrogen dioxide (>99.5% purity) for ASTM D7528: Standard Test Method for Bench Oxidation of Engine Oils by ROBO Apparatus.

Results and Discussion: In 2017 Sigma-Aldrich discontinued nitrogen dioxide (purity >99.5%) from its offering, citing difficulty shipping due to increased DOT standards and truck availability. Unknown to the ROBO Surveillance Panel at that time was Sigma-Aldrich was the sole supplier to all labs. To ensure continuity and long-term viability of the ROBO test, the Surveillance Panel agreed to take two actions:

- 1) Identify alternative suppliers for nitrogen dioxide (>99.5% purity)
- 2) Evaluate and approve the use of nitrogen dioxide diluted in air as a suitable alternative to liquid (high purity) nitrogen dioxide for ASTM D7528

To satisfy the first action, two additional vendors were identified: Electronic Fluorocarbons and SpecGas. Satisfying the second action would take a much longer, methodical approach. Aside from supply security this approach offered additional benefits including safety (less concentrated), easier to ship, and could potentially provide more consistent results (easier to meter).

The information below details the development and approval of the dilute nitrogen dioxide alternative.

The current ROBO method, ASTMD D7528-17a, requires 2.0 mL \pm 0.1 mL of nitrogen dioxide fed into reactor over 12 hours \pm 1 hour via subsurface tubing. The flow rate of the nitrogen dioxide is controlled using a precision needle valve. Prior to entering the reaction vessel, the nitrogen dioxide is mixed with dry air flowing at a rate of 185ml/min as their flows intersect in a stainless steel tee before entering the reaction vessel via a subsurface (below the surface of the lubricant) tube. Based on calculations provided in the Appendix 1, it was determined that subsurface feed [dry air + NO₂] was equivalent to a concentration of 1.13% nitrogen dioxide in air. In principle, it does not matter whether we use premixed nitrogen dioxide + dry air or we use nitrogen dioxide + dry air mixed in-situ just prior entering the reaction vessel – ultimately the lubricant in the reaction vessel sees the same concentration of nitrogen dioxide in air regardless of how the two components are mixed. This was the basis for all work pertaining to dilute nitrogen dioxide. To further demonstrate this point an illustration is provided below:

A table comparing current ROBO settings to proposed ROBO settings with nitrogen dioxide in dry air is provided below:

Ingredient	ROBO Setting	Proposed dilute NO2 setting				
Test fluid	200 grams	200 grams				
Iron ferrocene	15 PPM	15 PPM				
Nitrogon diovido	2 ml "pure" NO ₂ fed over first 12	1.13% NO ₂ in air fed at 185 ml/min				
Nitrogen dioxide	hours	over first 12 hours				
Dry air	185 ml / minute (entire test)	185 ml / minute (12 hours – EOT)				
Agitation	200 RPM	200 RPM				
Vacuum	0.61 Bar	0.61 Bar				
	56.6 L/min	56.6 L/min				
Temperature	170°C	170°C				
Time	40 Hours	40 Hours				

The next step was to demonstrate equivalence between the current procedure with liquid nitrogen dioxide and the proposed procedure using the nitrogen dioxide diluted in air. The surveillance panel agreed that an acceptable approach would be test the current reference oils (TMC 434-2, TMC 435-1, TMC 438) using the proposed procedure with nitrogen dioxide diluted in air, then compare those results against the historic values available through TMC's industry reference test data. Labs AM and G each donated 2-3 tests per reference oil. Results are plotted below. Additionally, the dataset is available in Appendix 2.

The results of the study validated our hypothesis: whether we mix the nitrogen dioxide with dry air in-situ prior to entering the reaction vessel or we use a "premix" of 1.13% nitrogen dioxide in air, results will be equivalent. The same trend for MRV vs. pVIS was observed regardless of how nitrogen dioxide was introduced. After all, the lubricant in the reaction sees the same concentration of nitrogen dioxide in air regardless of the mixing process.

On April 11, 2019 the ROBO Surveillance Panel convened and agreed that both means of introducing nitrogen dioxide provided equivalent results.

- End report -

Appendix 1

Concentration of nitrogen dioxide in air calculation.

Critical assumptions:

- Dry air is fed at 185mL per minute
- 2.0mL of nitrogen dioxide is fed over 12 hours

Typical properties of nitrogen dioxide:

- Density = 1.448g/ml at 68F (20C)
- Vapor density = 1.58 relative to air = 1.58 * 1.2041*10-³ g/ml = 1.903*10⁻³g/ml

Typical properties of air:

Density = 1.2041*10⁻³ g/ml at 68F (20C)

Concentration by volume:

Volume of NO2 in vapor phase = mass of NO2 / vapor density of NO2

 $\frac{2.896g NO2}{0.001903g/ml} = 1,521 \, ml \, of \, NO2 \, in \, vapor \, phase$

Concentration by volume = volume of NO2 / (volume of air + volume of NO2)

 $\frac{1,521ml\,NO2}{(133,200ml\,air+1,521ml\,NO2)} \times 100 = 1.129\% \ by \ volume$

Appendix 2

Results using nitrogen dioxide diluted in air.

IND	TESTKEY	APPARATS	VAL	PVIS	MRVTEMP	MRVYSEOT	MRV	Current limits	Ln MRV	Current limits
435-1	116911-ROBO	AM3	NN	162.5	-30	<35	72,200	44,570 - 92,910	11.1872	10.7048 - 11.4394 (s.d. ln) = 0.20295
435-1	140615-ROBO	AM3	NN	145	-30	<35	61,700		11.03	
435-1	137372-ROBO	AM 3	NN	148.3	-30	<35	74,300		11.2159	
435-1	135714-ROBO	G 8	AG	193.3	-30	<35	81,000		11.3022	
435-1	138779-ROBO	G 8	AG	136.2	-30	<35	55,400		10.9223	
4 35-1	138781-ROBO	G 8	ŁG	252	-30	<70	223,100		12.3154	
						AVG	68,920	AVG	11.1315	AVG
						STDEV	10,254	STDEV	0.1528	STDEV
438	83467-ROBO	AM3	NN	197	-30	<35	51,000		10.8396	9.8683 - 10.6669 (s.d. ln) = 0.2037
438	119646-ROBO	AM3	NN	156.5	-30	<35	34,500		10.4487	
438	137387-ROBO	AM 3	NN	144.9	-30	<35	32,900	19,308	10.4012	
438	135716-ROBO	G 8	AG	189.7	-30	<35	40,800	42,912	10.6164	
438	135717-ROBO	G 8	OG	229.1	-30	<35	63,200	,	11.0541	
438	138795-ROBO	G 8	AG	160.7	-30	<35	35,200		10.4688	
						AVG	42,933	AVG	10.6381	AVG
						STDEV	11,933	STDEV	0.2587	STDEV
434-2	119643-ROBO	AM3	NN	144.3	-30	<35	65,100	41,126 76,008	11.0837	10.6244 - 11.2386 (s.d. ln) = 0.1551
434-2	113304-ROBO	AM3	NN	151	-30	<35	65,500		11.0898	
434-2	142329-ROBO	AM 3	NN	117.5	-30	<35	50,900		10.8376	
434-2	138766-ROBO	G 8	AG	105.4	-30	<35	43,100		10.6713	
434-2	138767-ROBO	G 8	OG	178.7	-30	<35	76,700		11.2477	
434-2	142038-ROBO	68	LG	146.1	-30	<35	69,200		11.1448	
						AVG	60,260	AVG	10.986	AVG
						STDEV	13,259	STDEV	0.229	STDEV