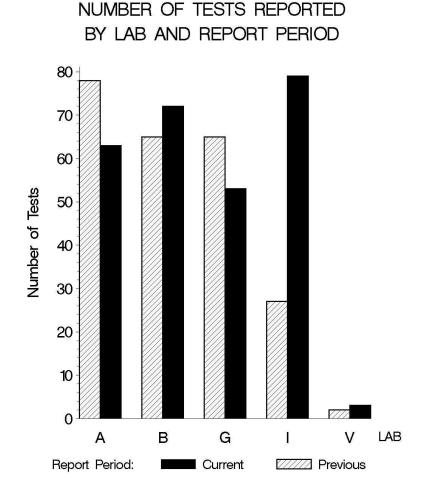


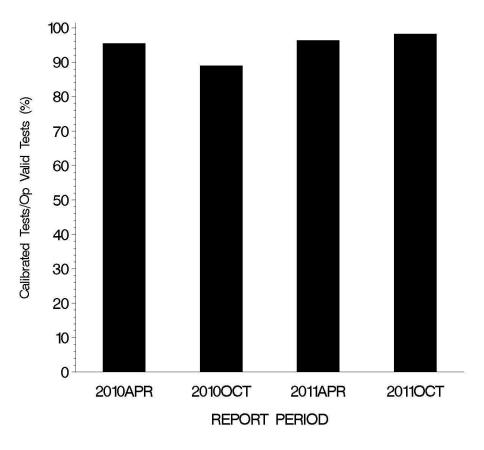
Test Monitoring Center


Carnegie Mellon University 6555 Penn Avenue, Pittsburgh, PA 15206, USA http://astmtmc.cmu.edu 412-365-1000

MEMORANDUM:	11-048
DATE:	November 8, 2011
TO:	Gil Reinhard, Chairman, CBT Surveillance Panel
FROM:	Michael T. Kasimirsky Michael J. Rasimisky
SUBJECT:	HTCBT Testing from April 1, 2010 through September 30, 2010

A total of 270 HTCBT tests were reported to the Test Monitoring Center during the period from April 1, 2011 through September 30, 2011. Following is a summary of testing activity this period.

	Reporting Data	
Number of Labs	5	


Tests reported this period were distributed as shown below:

Test Distribution by Validity

	TMC Validity Codes	No. of Tests
Operationally and Statistically Acceptable	AC	256
Failed Acceptance Criteria	OC	5
Operationally Invalid	LC, RC	4
Aborted	XC	2
Acceptable Donated Tests	AG	0
Unacceptable Donated Tests	OG	3
Total		270

OPERATIONALLY VALID TESTS MEETING ACCEPTANCE CRITERIA

The above chart shows the percentage of accepted operationally valid tests. Five tests failed to meet the acceptance criteria this period.

The reasons for failed, invalid, or aborted tests are shown in the following tables:

Summary of Reasons for Fance Tests	
	No. of Tests
Copper, mild	3
Lead, mild	1
Copper & Lead, severe	1

Summary of Reasons for Failed Tests

Summary of Reasons for Invalid Tests

	No. of Tests
Cooling Water Problem	3
Airflow & Temperature Control Problems	1

Summary of Reasons for Aborted Tests

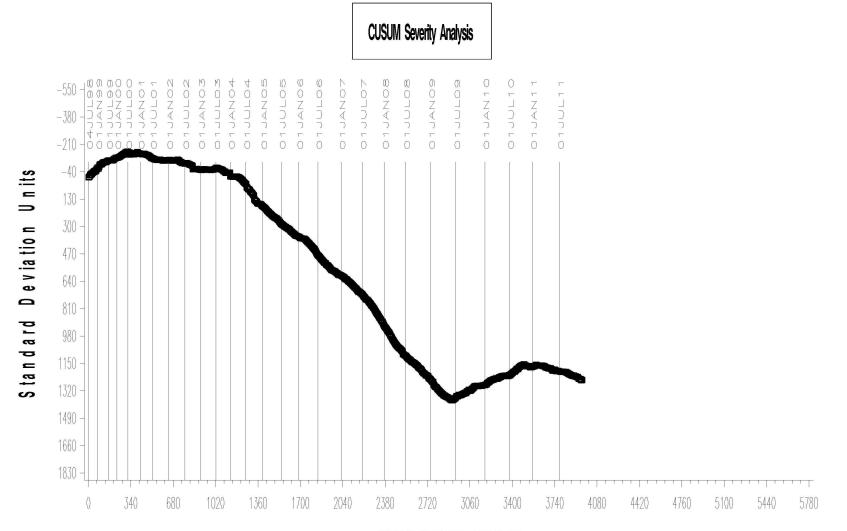
	No. of Tests
Sample Spilled	1
Bath Failure	1

Industry Severity Summary

The following table shows the average Δ /s, by laboratory and for the industry overall, for both copper and lead concentration for this ASTM report period.

Average Δ /s by Lab			
Lab	n	CUC	PBC
А	62	0.586	0.390
В	70	-0.053	-0.495
G	50	0.893	0.714
Ι	79	-0.141	0.616
V	0	0.000	0.000
Industry	261	0.253	0.283

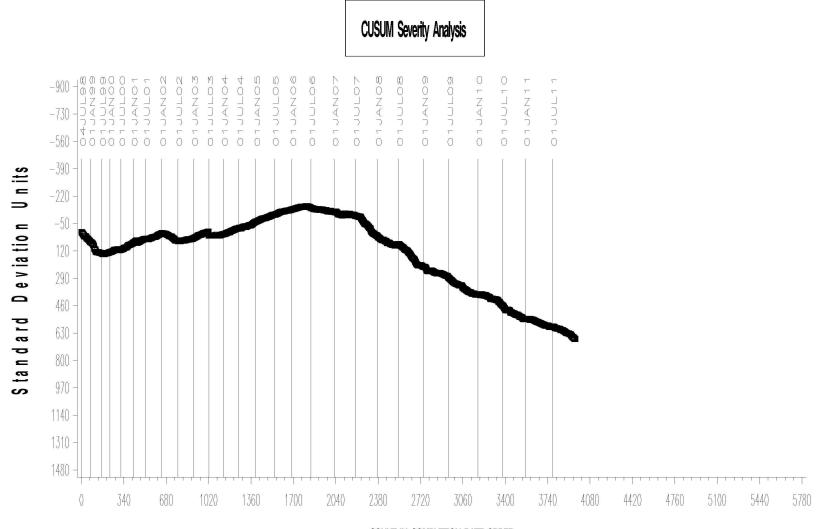
Individual test results can be found on the TMC Web Page at the following link:


ftp://ftp.astmtmc.cmu.edu/refdata/bench/htcbt/data/

The plots of summation delta/s from target for change in copper and change in lead, respectively, are shown on the following pages. Copper concentration results have returned to the severe trend that has existed for much of the history of the test. Lead concentration results are continuing the severe trend begun in 2007.

HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA

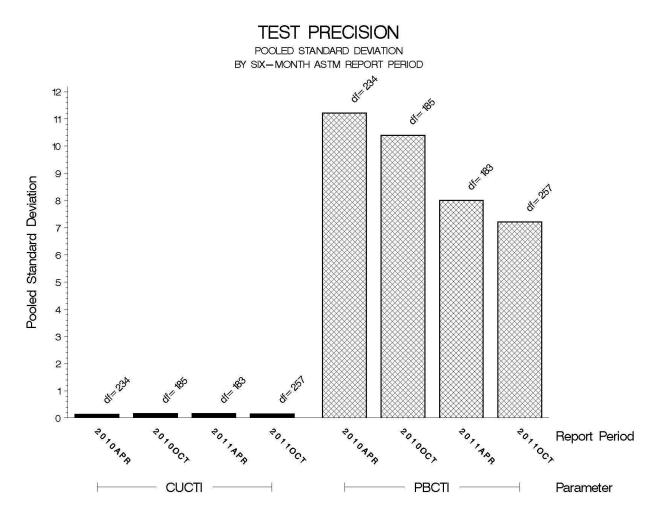
COPPER CHANGE (ppm)


COUNT IN COMPLETION DATE ORDER

04NOV11:11:07

HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA

LEAD CHANGE (ppm)



COUNT IN COMPLETION DATE ORDER

04NOV11:11:07

POOLED S:

Precision estimates, by report period are depicted below. Precision estimates for both copper and lead are within historical levels.

STATUS OF REFERENCE OIL SUPPLY:

At the end of this report period, the testing oil supply stood as outlined in the following table:

		@ TMC	
Oil	Samples @ Labs	Samples	Gallons
44-1	0	0	0.0
44-2	38	166	5.2
1005-1	0	0	0.0
1005-3	59	30640	957.5
Total	97	30806	962.7

Reference Oil 1005-3 is used in multiple test areas. The total TMC oil inventory shown, but all isn't available for HTCBT use.

Inventory levels of reference oil 44-2 are getting low. The TMC has begun work on procuring a reblend of this oil, but no delivery date for that oil is available at this time.

INFORMATION LETTERS:

No information letters were issued this period.

SUMMARY

- Over the course of this report period, copper severity, as measured by cusum plotting, continued the existing severe trend.
- Over the course of this report period, lead severity, as measured by cusum plotting, continued the existing severe trend.
 - Precision as measured by pooled standard deviation is better than last period for lead concentration, while copper concentration is comparable to previous levels.

MTK/mtk/astm1011.doc/mem11-048.mtk.doc

F. M. Farber J. A. Clark CBT Surveillance Panel <u>ftp://ftp.astmtmc.cmu.edu/docs/bench/htcbt/semiannualreports/htcbt-10-2011.pdf</u>

Distribution: email

c: