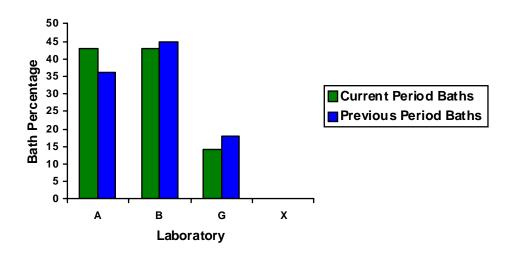
MEMORANDUM: 08-030

DATE: April 21, 2008

TO: Gil Reinhard, Chairman, CBT Surveillance Panel

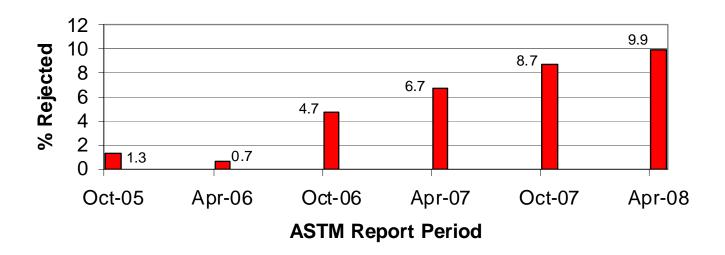

FROM: Jeff Clark

SUBJECT: High Temperature Corrosion Bench Testing for the April 2008 Report Period

A total of 204 High Temperature Corrosion Bench Test results from fourteen baths in three labs were reported to the TMC during the April 2008 ASTM report period, which began on October 1, 2007 and ended on March 31, 2008.

The following chart shows the distribution by laboratory.

Laboratory/Bath Distribution

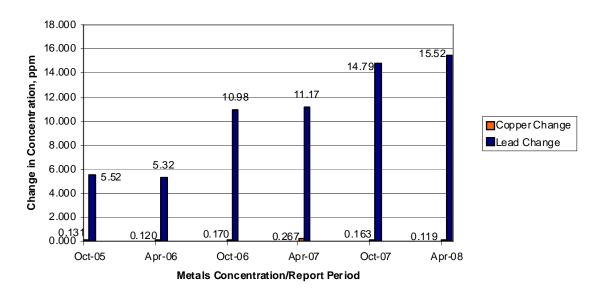

TC1 C 11 '	• •	1 , ,	C /1	C	• • •		1 , ,	1 70 (0
I ha tallawing	cummarizac 1	the ctatue	of the	rataranca	α_1	tacte ranarta	d to t	$h \cap I \setminus H$
The following	Summanzes i	ine status	α		OH	LUSIS FUDDITU	uwi	TIC TIVIC.

	TMC Validity Codes	No. of Tests
Operationally and Statistically Acceptable	AC	155
Failed Acceptance Criteria	OC	17
Declared Invalid by Laboratory	LC	4
Aborted	XC	1
Acceptable Donated Tests	AG	23
Unacceptable Donated Tests	OG	4
Total		204

The donated tests were run as part of the process for approving a new batch of test coupons. The unacceptable donated tests were due to running with a failed reference test. Tables 1, 2, and 3 (attached) summarize any failed, invalid and aborted tests.

The following presents the fail rate for this period with the fail rates of previous periods. The recent rise in rejection rate is due primarily to a rise in rejections at one lab. For this period, 11 of the 15 failed tests were from Lab A.

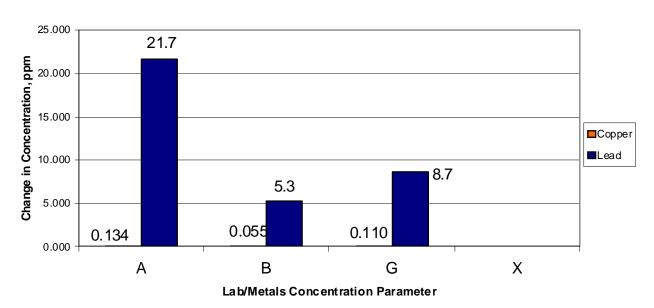
Comparison of Rejection Rates for This Period Versus Previous Periods


Industry Severity and Precision

The current severity for the change in metals concentration parameters on all operationally valid tests, for the current and previous periods, is tabulated below.

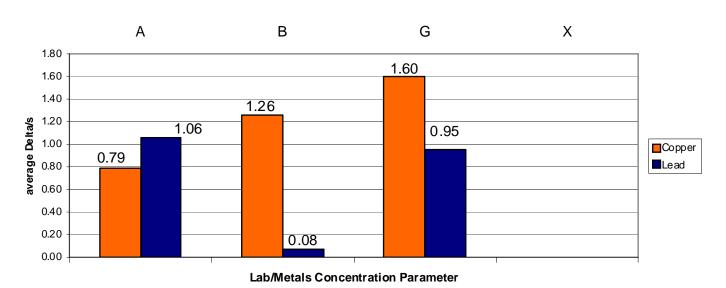
Period	n	ΔCu	ΔPb
		Mean Δ/s	Mean Δ/s
10/1/07 through 3/31/08	172	1.27	0.68
4/1/07 through 9/30/07	173	0.84	0.36
10/1/06 through 3/31/07	176	0.58	0.15
4/1/06 through 9/30/06	172	0.90	0.11
10/1/05 through 3/31/06	137	0.50	-0.21

Figures 1 and 2 plot the Summation delta/s from target for change in copper and change in lead, respectively. Figure 1 shows copper change to be severe for the period. Figure 2 shows lead change to be severe for the period. Precision estimates, by report period are depicted below. Compared to past periods, precision for Cu change show improvement while precision for Pb shows degradation.


Precision Estimates by ASTM Report Period

Laboratory Severity and Precision

The following plot shows the precision for this period, by lab.


Precision By Lab

Precision estimates for both Copper and Lead show better precision at Lab B than at Labs A and G.

The following plot shows the average Δ /s by laboratory and concentration parameter for this ASTM report period. For Copper, Lab A was the mildest and for Lead, Lab B was the mildest. Lab G was the most severe for Copper and Lab A was the most severe for Lead.

Average Delta/s By Lab

Reference Oil and Hardware

Reference oil quantities available at the laboratories and TMC, as well as estimated life of these oils, are tabulated below. The TMC is out of oil 44 and is checking on the availability of a reblend.

Oil	TMC Inventory	TMC Inventory	Lab Inventory	Usage Ratio	Estimated life
	(gallons)	(tests)	(tests)	(%)	
1005	16.8	~537	48	~75	2.0 years
44	0	0	7	~25	>2 months

A new batch of test coupons, Batch G, has been approved for use. Reference tests with Batch G coupons will be evaluated with the current test targets until enough tests have been run to reset the targets, if necessary. The current reference oil acceptance bands are shown in the table below.

Oil	Copper Change (ppm)	Lead Change (ppm)
1005	7.2 – 12.6	6.7 - 57.8
44	45.1 – 172.7	24.2 - 84.0

Information Letters

Information Letter 07-01 was issued on November 1, 2007. Topics included removing the evaporation loss calculation, cleaning techniques, and minor wording revisions.

Additional Information

The HTCBT database is available on the TMC's website. If you have any questions on how to access this information, contact the TMC.

JAC/jac/mem08-030.jac.doc

c: HTCBT Surveillance Panel

ftp://ftp.astmtmc.cmu.edu/docs/bench/htcbt/semiannualreports/htcbt-04-2008.pdf

J. L. Zalar

F. M. Farber

M. T. Kasimirsky

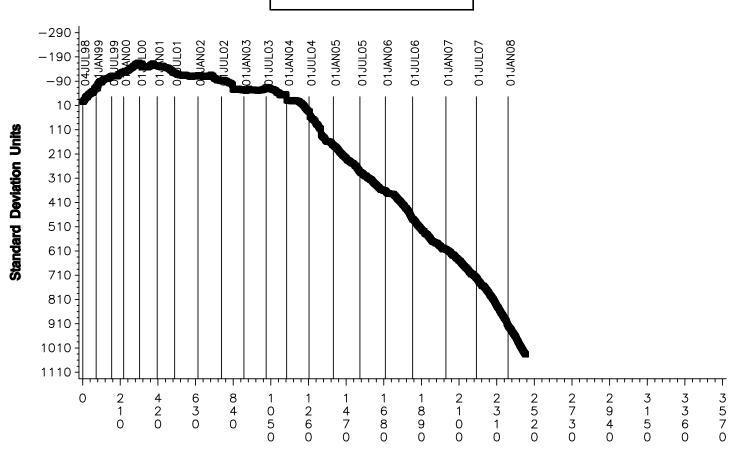
Distribution: Email

Table 1
Summary of Reasons for Failed Tests

·	No. of Tests
Lead, severe	8
Lead, mild	2
Copper, severe	5
Copper and Lead, severe	2

<u>Table 2</u> Summary of Reasons for Invalid Tests

	No. of Tests
Airflow out of spec	2
High bath temperature	1
Test matter accidentally discarded	1

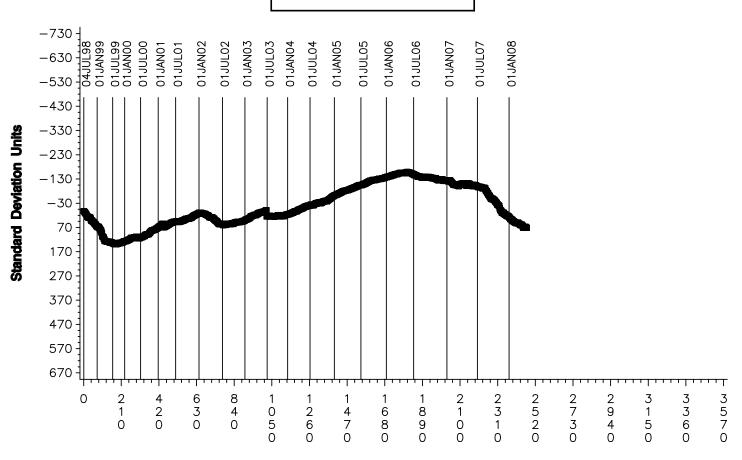

Table 3
Summary of Reasons for Aborted Tests

	No. of Tests
Failed bath stirrer	1

Figure 1
HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA

COPPER CHANGE (ppm)

CUSUM Severity Analysis


COUNT IN COMPLETION DATE ORDER

TMC 18APR08:15:35

Figure 2
HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA

LEAD CHANGE (ppm)

CUSUM Severity Analysis

COUNT IN COMPLETION DATE ORDER

TMC 18APR08:15:35