B07 Volatility Surveillance Panel Updates

Amy Ross 20231101

Minutes 20231101

- Antitrust Statement
- Members List Review
- Minutes 20230607 Review
 - Incorrect minutes presented; correct minutes sent via email after meeting with a motion to approve by Denny Gaal and a second by Shawn Dubecky
- Overview of D6417 and D5800 Executive Summary (high level)
- Discussion of interim monitoring of D5800 procedures
 - Multiple comments and discussion regarding practical significance of differences between procedures B and D
 - No significant change in fail rate, even with an influx of new and returning labs/rigs in the most recent period
 - Severity adjustments are confirmed and adjusted dynamically to accommodate variability (Zi, not Yi adj)
 - Panel has decided not to take any actions regarding targets or further adjustments at this time
 - TMC engineering judgement to determine significant change in pass/fail rate as actionable
 - AR to research how CEC is approaching variability/differences in procedure
 - Continuous annual and interim monitoring by AR
- Other topics?
 - No D5800 updates at this time; GF-7 limits established for Noack

Overview

- Antitrust Statement
- Members List Review
- Minutes 20221028 Review
- Overview of D6417 and D5800 Executive Summary (high level)
- Discussion of interim monitoring of D5800 procedures
- Other topics?
- Adjourn

Antitrust Statement

ASTM International is a not-for-profit organization and developer of voluntary consensus standards. ASTM's leadership in international standards development is driven by the contributions of its members: more than 30,000 technical experts and business professionals representing 135 countries.

The purpose of antitrust laws is to preserve economic competition in the marketplace by prohibiting, among other things, unreasonable restraints of trade. In ASTM activities, it is important to recognize that participants often represent competitive interests. Antitrust laws require that all competition be open and unrestricted.

It is ASTM's policy, and the policy of each of its committees and subcommittees, to conduct all business and activity in full compliance with international, federal and state antitrust and competition laws. The ASTM Board of Directors has adopted an antitrust policy which is found in Section 19 of ASTM Regulations Governing Technical Committees. All members need to be aware of and compliant with this policy. The Regulations are accessible on the ASTM website (http://www.astm.org/COMMIT/Regs.pdf) and copies of the antitrust policy are available at the registration desk

Members List – Updated 20230106

Adam Ramos	adam.ramos@swri.org
Alexandre Romanov	Alexandre.Romanov@petrocanadalsp.com
Alfis Babajide	alfis.babajide@shell.com
Becky Grinfield	bgrinfield@swri.org
Brittany Pfleegor	bjp@astmtmc.org
BTGN@chevron.com	BTGN@chevron.com
Charles Baker	charles.l.baker@exxonmobil.com
Cindy Klager	cklager@koehlerinstrument.com
Damian Beardmore	Damian.beardmore@bp.com
David Lee	David.Lee@chevron.com
Dennis Gaal	dennis.a.gaal@exxonmobil.com
Elisa Santos	elisa.santos@infineum.com
Gordon Cox	gcox@savantgroup.com
Greg Miiller	gmiiller@savantgroup.com
Greg Lentz	greg.lentz@lubrizol.com
Janet Barker	jbarker@swri.org
Jeff Clark	jac@astmtmc.org
Jo Martinez	JoMartinez@chevron.com
Joe Franklin	joe.franklin@intertek.com
John Bucci	jbucci@savantgroup.com
Joe Sullivan	Joseph.r.sullivan@exxonmobil.com
John Griffin	john.m.griffin@exxonmobil.com
John Loop	jgl@astmtmc.org
Johnny Garza	johnny.garza@shell.com
JPZG@chevron.com	JPZG@chevron.com
Kafayat Amusa	Kafayat.Amusa@bp.com
knadkarni@aol.com	knadkarni@aol.com
Larry Spino	Larry.Spino@paclp.com
LFNQ@chevron.com	LFNQ@chevron.com

luwt.ripp@sinopec.com	luwt.ripp@sinopec.com
Maggie Smerdon	msmerdon@savantgroup.com
ManHonTsang@chevron.com	ManHonTsang@chevron.com
Mark Round	Mark.Round@AftonChemical.com
Martin Chadwick	martin.chadwick@intertek.com
Matt Schlaff	matt.schlaff@intertek.com
Mekalah Cofell	mekalah.l.cofell@exxonmobil.com
Mike Birke	mbirke@swri.org
Mike Lopez	mike.lopez@intertek.com
Phuoc Pham	phuoc.pham@exxonmobil.com
Prashant.chandarana	prashant.chandarana@paclp.com
Rafji Jalkian	Rafi.Jalkian@exxonmobil.com
Rich Grundza	reg@astmtmc.org
Rich Ochenkowski	raochenkowski@valvoline.com
Robert Stockwell	robert.stockwell@chevron.com
Rosina Rainey	rosina.rainey@aftonchemical.com
Ron Shah	Ron.shah@infineum.com
Raj Shah	rshah@koehlerinstrument.com
Sarah Nuss-Warren	snuss-warren@savantgroup.com
Shawn Dubecky	Shawn.Dubecky@lubrizol.com
Shelia Thompson	shelia.thompson@aftonchemical.com
Stefan Lukawiecki	stefan.lukawiecki@safety-kleen.com
Tara Kirchner-Jean	tara.kirchner-jean@lubrizol.com
Thomas Herold	thomas.herold@paclp.com
Travis Kostan	Travis.kostan@swri.org
Vincent Colantuoni	vcolantuoni@koehlerinstrument.com
Vince Donndelinger	vince.donndelinger@lubrizol.com
Peng Wang	wangpengly_rhy@petrochina.com.cn
Xiao-Hu Fan	xiao-hu.fan@lubrizol.com
Yong Li McFarland	yongli.mcfarland@swri.org
Zach Adams	Zachary.Adams@aftonchemical.com

Minutes 20230607

- Antitrust Statement (Reviewed)
- Members List Review
 - updated 20230607 and is inserted at the end of the slides
- Minutes Approval from last meeting
 - Motion by Greg Miiller, Second by Robert Stockwell
- Reference Oil Checks
 - Reviewed by panel; no comments
- Stats Review
 - Presented by Ricard Affinito; virtually no change in standard deviation as confirmed by ANOVA from data up to 06/05/2023 (MSE = 0.0462); untransformed reference oil data shows unequal variances across range of mean values which reaffirms the natural log transformation of Noack data; overall fail rate remains low but observed slight deviation for the period upcoming which can be attributed to one rig (BD4 with an individual fail rate of 54%); no recommended changes at this time
 - Comment from Alfis Babajide (Shell) regarding the VOLD18 daily QC fluid as tested on NCK25G rigs
 - panel discussed troubleshooting options for a rig which is unable to pass daily reference checks, including pump calibrations, temperature probe calibration, firmware updates, proper filter maintenance, cup/lid pairing
 - AB asked for any panel members to comment if they had issues passing the VOLD18 fluid to which there was no response; it was noted that a rig cannot submit for calibration or perform testing with the intent of licensing without passing the daily QC check with VOLD18; other reference oils are suitable for use with Noack but the VOLD18 is a requirement for calibration and licensing data acquisition; Observing consistent lab/rig participation and relatively infrequent occurrence of recalled tests, it can be assumed that passing the VODL18 daily QC is not prohibitive of participation at this time
- B07 Semi-Annual report (slides included)

Executive Summary Overview

D6417 & D5800

Executive Summary Overview – D6417

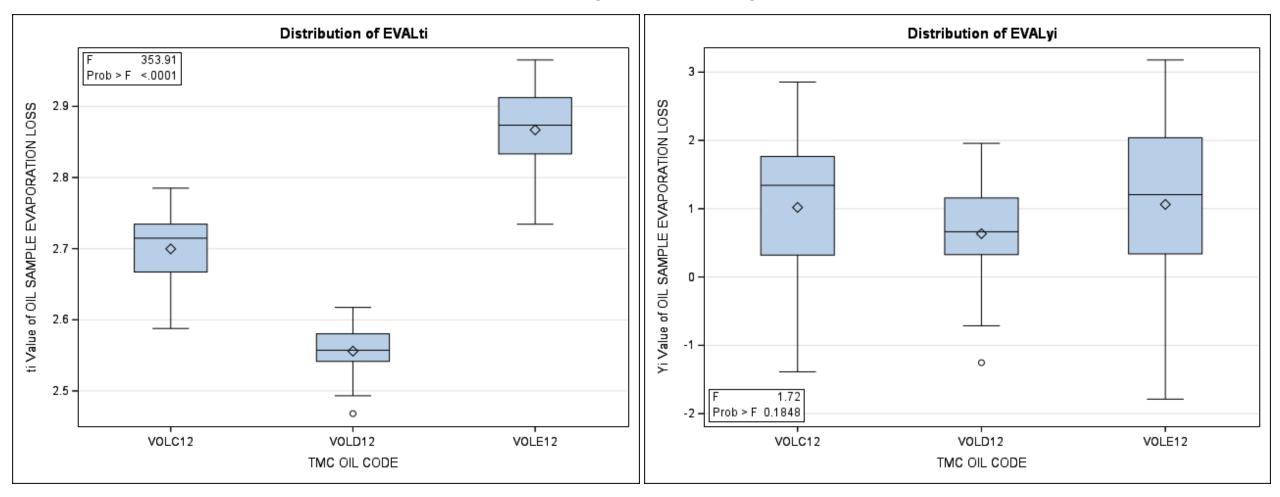
- Labs -1, Stands -1
- Fail Rate 0%
- Pooled s lower than target (0.34 vs. 0.39)
- Performance on target (-0.02 md/s)
- Calibration Fluids:
 - Oil 52: On target for mean, sd, and performance (-0.35)
 - Oil 55: On target for mean, sd, and performance (-0.39)
 - Oil 58: On target for mean, sd, and very slight severe performance (0.58)

D6417: Estimation of Engine Oil Volatility by Capillary GC

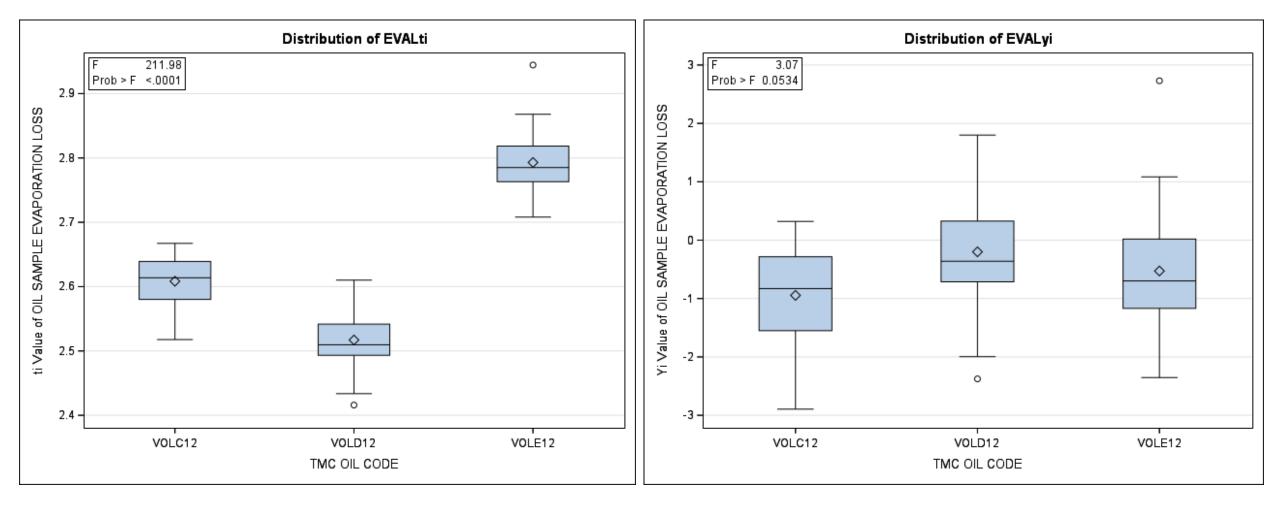
Period Precision and Severity Estimates

Area % Volatized @ 371°C	n	df	Pooled s	Mean ∆/s
Initial Selected Oils from RR	54	51	0.39	
10/1/19 through 3/31/20	17	14	0.30	0.09
4/1/20 through 9/30/20*	16	13	0.41	-0.34
4/1/20 through 9/30/20*	14	11	0.31	0.01
10/1/20 through 3/31/21*	21	18	0.47	-0.81
10/1/20 through 3/31/21*	19	16	0.37	-0.43
4/1/21 through 9/30/21	17	14	0.39	-0.28
10/1/21 through 3/31/22	20	17	0.51	0.13
4/1/22 through 9/30/22	19	16	0.48	-0.67
10/1/22 through 3/31/23	18	15	0.43	0.41
4/1/23 through 9/30/23	16	13	0.34	-0.02

*Period statistics with two mild results from rigs D5/D6 included and excluded (operational problem suspected but lab never confirmed)


Executive Summary Overview – D5800

- Labs +3, Stands +11
- Fail Rate 10.65%
 - 7/18 level 3
 - 14/18 severe
 - 7/18 OC due to imprecision; ProcB=5, ProcD=2
 - Rig BD4 contributed 7/18 OC, level 2 severe; rig has been removed from LTMS
- Pooled s much higher than target (0.0586 vs. 0.0465; 0.0565 without BD4)
- Performance shift (back to severe and worse than last; 0.33)
- Calibration Fluids:
 - VOLC12: above mean target, much worse than target precision
 - VOLD12: above mean target, better than target precision
 - VOLE12: above mean target, much worse than target precision


Executive Summary Overview – D5800

- Procedures
 - Procedure B Performance severe and slightly above target; +7 new rigs in population
 - Procedure D performance mild and comparable to target; +4 new rigs in population
 - Procedure B fail rate 12.7%, Procedure D fail rate 7.5%

Procedure B: Apr23 - Sept23 Results

Procedure D (NS2): Apr23 - Sept23 Results

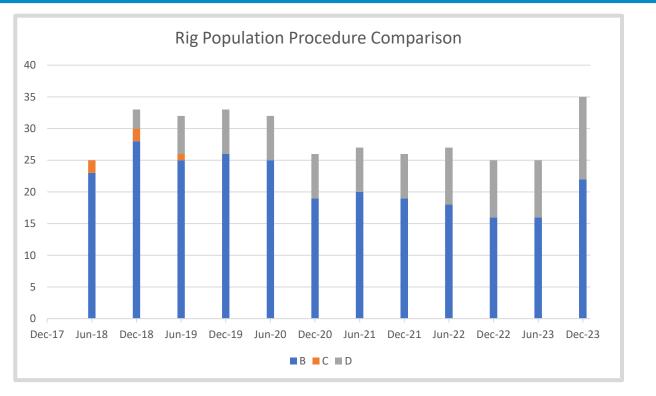
D5800: Evaporation Loss of Lubricating Oil by Noack Method: Semester Summary

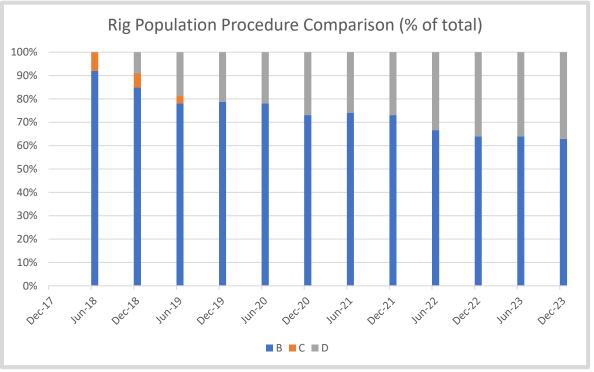
Precision (Pooled s) moved slightly further from target this semester as former and new labs returned to monitoring and reported several failing calibration attempts.

Performance (Mean Δ /s) returned towards a severe path at +0.33 s after being mild (at -0.15 s) the previous semester.

 Procedure B rigs continue to trend severe (0.98 s) while Procedure D rigs continue to trend mild (-0.56 s).

CUSUM plot once again turned towards severe as has been the observed trend for many years (except last semester). This is due to severe test results from both Procedure B and D units in the last six months. The industry EWMA Control Chart had several Severe Warning Alarms last semester (and continues to have alarms this semester).


Interim Monitoring of Procedures



Recap of Stats Reviews for D5800

- LTMS monitoring
- PDSC analyses of stability of fluids
- TMC regular P&C monitoring
- Annual review of targets and standard deviation by statisticians
- Individual procedure reports in biannual executive summaries
- Daily QC fluid monitoring (VOLD18)
- Consistent pass/fail rates for calibrations
- Monitoring of rig population changes (specifically, NCK25G and NS2)
 - Proportion mostly stable over past three periods (next slide)

Recap of Stats Reviews for D5800

Statistical Review July 2023

Statistical Review July 2023

- The key objective of the analysis was to identify significant differences between Procedures B and D—scenario example, if we tested a sample twice, using each procedure, could we discern which one was used?
 - Calibration data from 2019 and forward utilized, representing obsolescence of procedure C (January 2019) and introduction of Procedure D rigs (August 2018) in the TMC population
 - Data remained in natural log units; Only datapoints which were clear type-o's were removed
 - Descriptive stats provided estimated mean and variability details by oil and model
 - Data from calibration fluids were compared using GLM
 - Procedure, Lab, Apparatus were variables of interest
 - Residual analyses indicated mostly normal distributions for all oils; Ln scale is still appropriate
 - Tests for equal variances indicated differences between procedures B & D for VOLC12

Statistical Review July 2023

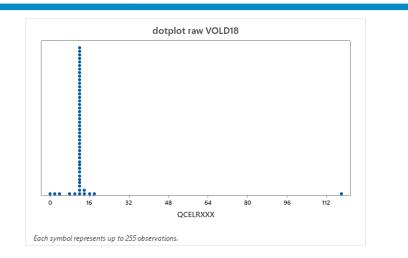
- The variability contributions of the individual procedures were significant
 - Estimated difference between procedures is 0.068 (~1.5 standard deviations)
 - Is this of practical concern?
 - If so, what steps could we take to mitigate this effect, outside of changing targets?
 - Adjustments are already being issued on a rig-to-rig basis, do we factor in a bias offset between procedures?
 - Set a data threshold before enacting changes?
 - Set actionable limit on failure rate?
 - Monitor more closely during influx of data for category changes?

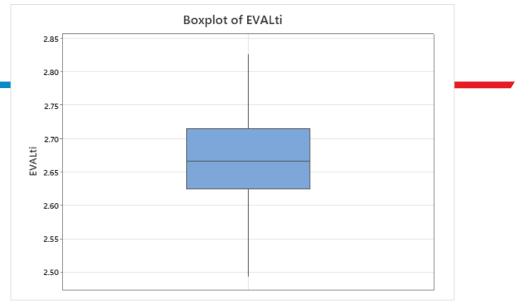
Other topics of discussion?.

Thank you for your time.

7.2.44

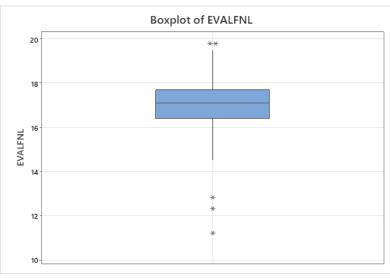
Appendix of Analyses

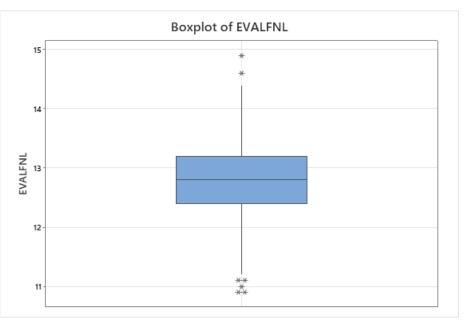

Current Targets


		Target Ln	SD Ln	Min Ln	Max Ln
TMC	VOLC12	2.6523	0.0465	2.6058	2.6988
	VOLD12	2.5264	0.0465	2.4799	2.5729
targets, Ln	VOLE12	2.8175	0.0465	2.771	2.864
		Target	SD Norm	Min	Max
TMC	VOLC12	14.187	0.675	13.5	14.9
targets,	VOLD12	12.508	0.595	11.9	13.1
norm	VOLE12	16.735	0.797	16	17.5
		Target	R/2.77	Rmin	Rmax
	VOLC12	14.19	0.627	13.56	14.82
D5800 Precision	VOLD12	12.51	0.571	11.94	13.08
FIECISION	VOLE12	16.73	0.709	16.02	17.44

Dataset Overview

n	Procedure / Model						
	В	В	D				
Oil	NCK2	NCK25G	NS2				
VOLC12	17	308	136				
VOLD12	19	295	141				
VOLE12	18	317	140				
VOLD18	7259	(pooled)	3833				


Dataset Overview



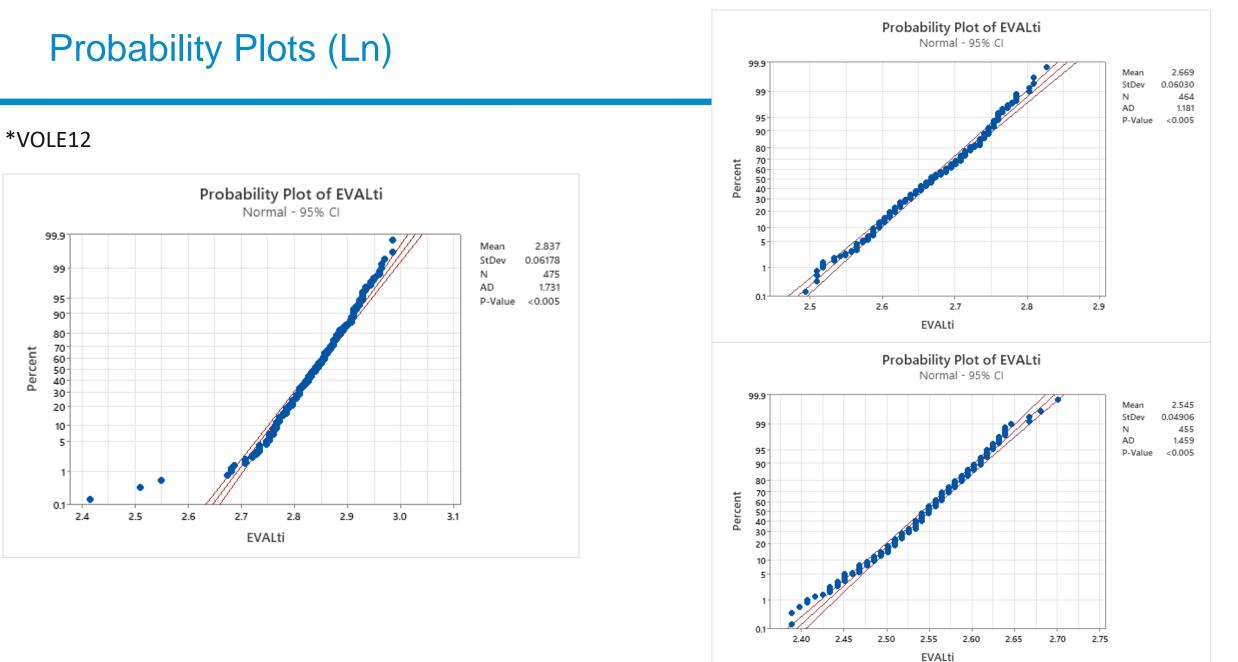
*VOLE12

*VOLC12 without ProcC

Descriptive stats by Procedure and Model

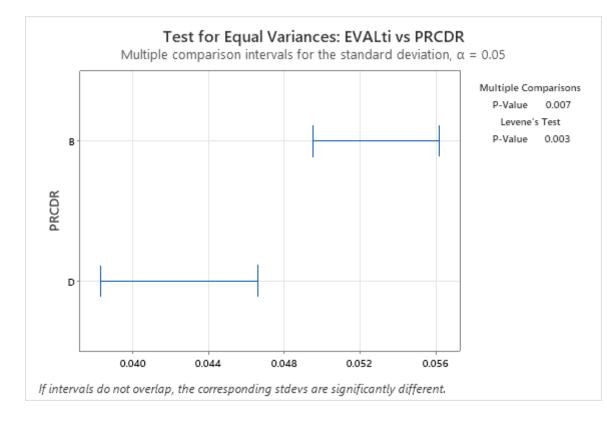
VOLC12 no ProcC

Variable	MODEL	N	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
Evati	NS2	136	0	<mark>2.6169</mark>	0.00360	0.0419	2.5096	2.5878	2.6174	2.6462	2.7473
Variable	MODEL	N	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
EVALti	NCK2	17	0	<mark>2.6549</mark>	0.00696	0.0287	2.6174	2.6355	2.6462	2.6707	2.7344
	NCK25G	308	0	<mark>2.6928</mark>	0.00302	0.0529	2.4932	2.6603	2.6980	2.7344	2.8273

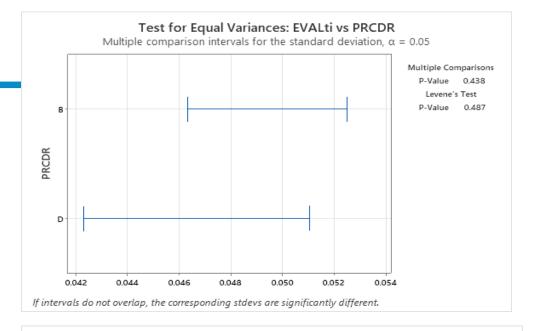

VOLD12

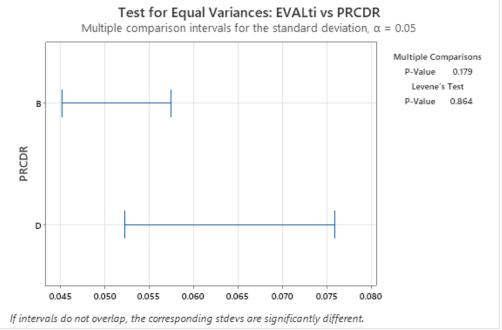
Variable	MODEL	N	N*	<mark>Mean</mark>	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
EVALti	NS2	141	0	<mark>2.5318</mark>	0.00389	0.0461	2.3979	2.5055	2.5337	2.5649	2.6391
Variable	MODEL	Ν	N*	<mark>Mean</mark>	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
EVALti	NCK2	19	0	<mark>2.5280</mark>	0.00522	0.0227	2.4932	2.5096	2.5337	2.5416	2.5726
	NCK25G	295	2	<mark>2.5530</mark>	0.00291	0.0500	2.3888	2.5257	2.5572	2.5878	2.7014

VOLE12


Variable	MODEL	N	N*	<mark>Mean</mark>	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
EVALti	NS2	140	1	<mark>2.7916</mark>	0.00529	0.0626	2.4159	2.7663	2.7973	2.8214	2.9653
Variable	MODEL										
variable	MODEL	N	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
EVALti	NCK2	N 18	N*	Mean 2.8401	SE Mean 0.00616	0.0261	Minimum 2.7850	Q1 2.8273	Median 2.8420	Q3 2.8565	Maximum 2.8848

VOLC12 and VOLD12 - OKAY




Tests for Equal Variances

*VOLC12

VOLD12 and VOLE12 - OK

t-tests for Targeted mean comparisons

Notes: All fluids showed differences, VOLE12 being the closest

COPY FROM 2019 FORWARD(IND = VOLC12 NO PROCC

One T VOLC12 no procC

N	Mean	StDev	SE Mean	95% Cl for	μ
461	<mark>2.66897</mark>	0.06004	0.00280	(2.66348, 2.674	447)
Null hypothes	is			H _o : μ = 2.6523	
Alternative hy	pothesis			H₁: µ ≠ 2.6523	
	T-Value				
	5.96	0.000			

2019 FORWARD(IND = VOLD12)

One T VOLD12

N	Mean	StDev	SE Mean	95% CI fo	rμ
455	<mark>2.54540</mark>	0.04906	0.00230	(2.54088, 2.54	4992)
Null hypothesis			Н	_o : μ = 2.5264	
Alternative hyp	oothesis		Н	ı: μ≠2.5264	
T-Value		P-Value			
	8.26				

2019 FORWARD(IND = VOLE12)

One T VOLE12

N	Mean	StDev	SE Mean	95% Cl for	μ
475	<mark>2.83657</mark>	0.06178	0.00283	(2.83100, 2.842	214)
Null hypothesis				H _o : μ = 2.8175	
Alternative hy	pothesis			H₁: μ ≠ 2.8175	
T-Value		P-Value			
	6.73	0.000			

t-Tests for mean comparisons by Procedure

Note: All fluids, especially VOLC12 and VOLE12

VOLC12 COPY FROM 2019 FORWARD(IND = VOLC12 NO PROCC

Two-Sample T-Test and CI: EVALti, PRCDR

PRCDR		Ν	Mean	StDev	9	SE Mean
В	3	325	<mark>2.6908</mark>	0.0526		0.0029
D	1	.36	<mark>2.6169</mark>	0.0419		0.0036
Difference			CI for erence		VOLE12 2019 FORWARD(IND = V	
0.07393	3 (0.0)	648	2, 0.08305)			ample 1
T-Value	DF		P-Value			
<mark>15.96</mark>	314		0.000	PRC	DR	Ν

= VOLE12)

ple T-Test and CI: EVALti, PRCDR

PRCDR	N	Mean	StDev	SE Mean
В	335	<mark>2.8554</mark>	0.0509	0.0028
D	140	<mark>2.7916</mark>	0.0626	0.0053

Difference	95% Cl for Difference	
0.06374	(0.05196, 0.07551)	

T-Value	DF	P-Value	
<mark>10.67</mark>	219	0.000	

VOLD12 2019 FORWARD(IND = VOLD12)

Two-Sample T-Test and CI: EVALti, PRCDR

PRCDR	Ν	Mean	StDev	SE Mean	
В	314	2.5515	0.0492	0.0028	
D	141	2.5318	0.0461	0.0039	
Difference	Difference 95% CI for Difference				
0.01973	0.01973 (0.01033, 0.02913)				

T-Value	DF	P-Value
4.13	285	0.000

Analysis of Variance

	Source	DF	Adj SS	Adj MS	F-Value I	P-Value
GLM Details	IND	2	19.5263	9.76313	4291.05	0.000
	LTMSLAB	13	0.6317	0.04859	21.36	0.000
	PRCDR	1	0.5013	0.50129	220.32	0.000
	Error	1373	3.1239	0.00228		
	Lack-of-Fit	35	0.3510	0.01003	4.84	0.000
	Pure Error	1338	2.7729	0.00207		
	Total	1389	24.4429			
	Model Sum	mary				
		1 A A				

S	R-sq	R-sq(adj)	R-sq(pred)
0.0476994	87.22%	87.07%	86.93%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIE
Constant	2.67991	0.00314	853.95	0.000	
IND					
VOLC12	-0.01464	0.00181	-8.07	0.000	1.35
VOLD12	-0.13712	0.00182	-75.36	0.000	1.35
LTMSLAB					
А	0.01278	0.00489	2.61	0.009	2.15
AU	-0.01641	0.00713	-2.30	0.022	1.99
AY	0.02303	0.00990	2.33	0.020	2.75
AZ	0.02303	0.00690	3.34	0.001	1.95
В	-0.03452	0.00416	-8.31	0.000	1.92
BA	-0.00599	0.00540	-1.11	0.267	1.77
BD	0.03857	0.00814	4.74	0.000	2.2
D	0.00289	0.00573	0.50	0.615	2.79
E1	-0.03469	0.00438	-7.92	0.000	1.7
F	-0.0120	0.0314	-0.38	0.703	18.5
G	-0.01588	0.00413	-3.84	0.000	1.8
Ι	-0.03216	0.00647	-4.97	0.000	1.8
J	0.03766	0.00727	5.18	0.000	2.02
PRCDR B	0.03400	0.00229	14.84	0.000	2.6