solidpartners provensolutions

ISL NCK Apparatus Evolution

D5800B Noack Workshop

Sandra Chirk Product Manager – Physical Properties

ANTER

KORFA

Houston, 30th January 2013

THAILAND •

Cambridge Viscosity

INDIA

ISL Noack Analyzers

NCK1 Model – 1st Generation

NCK2 Model – 2nd Generation

NCK2 5G Model current

2

USA · FRANCE · GERMANY · NETHERLANDS · UAE · RUSSIA · CHINA · SINGAPORE · SOUTH KOREA · THAILAND · INDIA

NCK1 Model – 1st Generation

3

Key Specs

- Compliance to Procedure A of ASTM D5800; CEC L40 A93 (Proc. A)
- Temp. Range : +150 to +300°C
- Aluminum block temperature control
- Wood's metal heating block

D5800 – Procedure A

NCK2 Model – 2nd Generation

5

Key Specs (release in 1998)

- Compliance to Procedure B of ASTM D5800; CEC L40 A93 (Proc. B)
- Temp. Range : +150, 200 or +250°C
- Sample temperature control
- Non Wood's metal heating block

What's different with Nck1 Model?? Only the heat transfer changes

- Same crucible
- Same glassware
- Same vacuum pump
- Same Test Procedure

No use of Wood Alloy and direct sample T°C monitoring

D5800 – Procedure B

NCK2 5G Model – Current

7

Key Specs (release in 2002)

- Compliance to Procedure B of ASTM D5800; CEC L40 A93 (Proc. B)
- Temp. Range : +150, 200 or +250°C
- Sample temperature control
- Non Wood's metal heating block

What's different with ISL Nck2 Model??

• Design refresh (benchspace optimization)

solidpartners provensolutions

Improve Noack Methods Precision

Air Flow Influence Study

Outline

9

- Background
- Study Results Review
- Conclusions & Actions

Study Background

10

- Objectif: Improve Noack method precision
- Test Configuration
 - Single equipment incl. Crucible, temperature probe, pressure controller. 2 x ovens were used, one for procedure A, one for procedure B.
 - Airflow measured with BUCK flow-meter (using bubble soap)

• Experiment

- Three reference oils with known performance
 - Base stock oil RL172/5 : 13.95% (Proc. A); 14.36% (Proc. B)
 - Formulated oil W4520001 : 10.5% (Proc. A); 10.85% (Proc. B)
 - Formulated oil W4520002 : 17.14% (Proc. B)
- Test performed, in replicate, using 3 x different tube diameters (Ø4mm, Ø4.2mm, Ø4.5mm) and according to standard conditions
 - Procedure A : oven at 250°C, time duration 60min
 - Procedure B : Sample at 245.2°C, time duration 60 min

Improving Method Accuracy

11

Cambridge Viscosity*

ANTER

Influence of extracting tube diameter

USA

FRANCE

Bias between Procedure A an B

Mean bias between Procedure B and Procedure A is 0.25% Bias increases when evaporation loss increases

GERMANY · NETHERLANDS · UAE · RUSSIA · CHINA · SINGAPORE · SOUTH KOREA · THAILAND · INDIA

Improving Method Accuracy Influence of Air Flow

3.8 1/min

Flowmete

GENERAL DIAGRAM OF NOACK METHOD B

AT THE BEGINNING OF THE TEST PROCEDURE

AT THE TEMPERATURE EQUILIBRIUM

Example with evaporation of 10% : volume of oil is lower than 2 l. @200°C \Rightarrow Floaw rate due to oil is not significant # 0.03 l/min

The flow rate does not depend on sample; evaporation loss nor procedure

Flow rate changes during the test:

5.0 1/min

9.4 mm²

At test start: flow rate is limited by injector diameter (>51/min)

At the T^oC equilibrium: flow rate decreases and is *limited by tube diameter*

The flow rate depends on tube diameter.

on		Tube	Procedure A	Procedure A&B (Umin)	
		diameter	Temperature	Airflow (0 min)	Airflow (30 min)
		4.0 mm	245.2	4.4	3.3
s	RL172/5	4.2 mm	244.8	5.2	3.8
		4.5 mm	244.6	5.3	4.3
	W4520001	4.0 mm	244.4	4.35	3.4
		4.2 mm	244.1	5.1	3.8
		4.5 mm	244.0	5.3	4.3
	W4520002	4.0 mm	244.4	4.3	3.4
		4.2 mm	244.2	5.0	3.8
		4.5 mm	244.1	5.15	4.3

Cambridge Viscosity* USA FRANC INDIA GFRI RUSSIA сні SINGAPOR SOU THAII AND

12

Improving Method Accuracy

Air Flow Adjustment Experiment

13

- To confirm airflow influence on the result, 2 extreme values of a 4.35 mm nominal tube diameter (Ø4.0 and Ø4.5) were used together with RL172/5*.
- Pressure value was modified to maintain 3.8 l/min airflow during the test (evaporation phase).

Test conditions	20mm H ₂ O	3.8l/min
Tube ∅4.0	12.8% (airflow 3.3 l/min)	13.8% (25.2 mmH ₂ O)
Tube Ø4.5	15.0% (airflow 4.3 l/min)	14.2% (18.8 mmH ₂ O)

*Base stock oil RL172/5 expected value: 14,36% (proc. B), 13,95% (proc. A)

Conclusion: Bias due to airflow shift is about 2% / (I/min). The nominal airflow value should be set at 3.8I/min.

USA · FRANCE · GERMANY · NETHERLANDS · UAE · RUSSIA · CHINA · SINGAPORE · SOUTH KOREA · THAILAND · INDIA

Reducing bias between Proc. A & B

14

sample temperature definition

- With procedure A, the crucible is immersed into wood metal block maintained @ 250°C.
- The energy exchange is so efficient that the sample heating rate (from ambient up to 200°C) is 70°C/min.
- The stabilisation of the sample temperature is reached within 15mn
- With procedure B it was not possible to get the "A" energy exchange without over heating effect of the crucible wall.

Sample T°C Profile

15

Comparison between Procedure A & Procedure B

Conclusion: Alignment of the 2 sample T^oC profiles by synchronizing the time near equilibrium temperature

USA · FRANCE · GERMANY · NETHERLANDS · UAE · RUSSIA · CHINA · SINGAPORE · SOUTH KOREA · THAILAND · INDIA

Summary

16

- Airflow has a significant impact on Noack Evaporation Loss for both procedure A and B.
- To improve precision of NOACK method, we need to make sure that air flow is correctly set in the field (previous studies had recommended 3.8I/min)
- PAC-ISL already control all the extracting tubes meets diameter conditions (tube Ø4.2mm, for 3.8l/min), therefore increase pressure loss control and sorting only diameter but by measuring flow rate that must help to increase precision.
- Should we work on checking procedure to be indicated in the test method?? Round Robin can be organized in order to:
- The best (but expensive) solution consists on measuring the airflow during the test with the airflow meter described in the experiment (BUCK with "bubble soap")
- An alternative method can be used with no additional material, simply by using pressure level indicator (already existing) to measure level difference in 2 conditions. Initial condition is use complete crucible, the other condition consist in reducing the "pressure loss" entry to maximize the "pressure loss" of the tube.

