

Test Monitoring Center

https://www.astmtmc.org

ASTM D02.B0.07 Semi-Annual Report Bench Test Monitoring

D874 (SASH), D5133 (GI), D5800 (NOACK), D6082 (HT FOAM), D6335 (TEOST), D6417 (GC VOL), D6557 (BRT), D6594 (HTCBT), D6794 (EOWT), D6795 (EOFT), D7097(MTEOS), D7216 (EOEC/LDEOC) and D7528 (ROBO)

Table of Contents

Section	Торіс			
Summary Items	<u>Executive</u>	Reference Oil Inventories	Additional Information	
Section		Торіс		
Test Area Status	TEST	LABS*	STANDS*	
Sulfated Ash	<u>D874</u>	5 (+0)	N/A	
Gelation Index (GI)	<u>D5133</u>	9 (+0)	46 (+4)	
NOACK Volatility	<u>D5800</u>	14 (+0)	39 (+0)	
High Temp Foam	<u>D6082</u>	7 (+0)	9 (+0)	
TEOST	<u>D6335</u>	7 (-2)	12 (-2)	
GC Volatility	<u>D6417</u>	7 (+0)	10 (+0)	
* Between 10/1/2024 and 3/31/2025				

Table of Contents

Section	Торіс			
Test Area Status (cont.)	TEST	LABS*	STANDS*	
Ball Rust Test (BRT)	<u>D6557</u>	5 (+0)	5 (+0)	
HTCBT	<u>D6594</u>	7 (-3)	24 (-2)	
EOWT	<u>D6794</u>	5 (+0)	N/A	
EOFT	<u>D6795</u>	5 (+0)	N/A	
MTEOS	<u>D7097</u>	11 (+0)	36 (+1)	
EOEC Elast. Compat.	<u>D7216-E</u>	8 (+0)	N/A	
LDEOC Elast. Compat.	<u>D7216-L</u>	7 (+0)	N/A	
ROBO	<u>D7528</u>	6 (+0)	29 (+1)	
* Between $10/1/2024$ and $3/31/2025$				

D874 (Sulfated Ash)

For the eighth consecutive 6-month period, there were no tests which failed to meet acceptance criteria for D874. Reference test results were close to target. Most assignments were with Reference Oil 92 to generate a batch of test results to establish final acceptance bands.

D5133 (Gelation Index)

 Number of Labs running GI is the same as last period, but four units came back into calibration.

D5800 (NOACK)

 Same number of labs and stands for past two semesters. Precision and Severity also consistent with the previous semester.

D6082 (High Temperature Foam)

▶ No new labs added this semester. Test moved from On-Target to Severe.

• <u>D6335</u> (TEOST)

• Two fewer labs and stands were calibrated this semester. Severity improved, but precision fell further away from target.

D6417 (GC Volatility)

No change in number of Labs/Stands. Precision remains on-target, but severity has moved slightly severe. One calibration fail this semester.

▶ <u>D6557</u> (BRT)

 Round Robin using RO's 1006 and 820-1 was conducted on new ball bearing Batch E. Round Robin using RO's 86 and 87 with ball Bearing Batch E is underway. RO 1006 is being assigned for all calibration tests. A reblend of RO 82 has been received by TMC and is undergoing QC verification.

▶ <u>D6594</u> (HTCBT)

Three labs (two stands) fell off calibration status this semester. Most labs have now moved on to Batch P coupons although some labs still possess Batch O coupons. Copper and Lead results are on-target for Precision and both showing reduced Severity.

▶ <u>D6794</u> (EOWT)

No change in number of test labs. A reduction in severity has been observed for all Change in Flowrate Average (CIFA) water levels. TMC working with Reference Oil 79 supplier to determine if a reblend is possible.

• <u>D6795</u> (EOFT)

No change in number of test labs. Severity in Change in Flow Average (CIFA) has reduced for the second straight semester, however Precision had a significant shift away from target this semester. TMC working with Reference Oil 79 supplier to determine if a reblend is possible.

▶ <u>D7097</u> (MTEOS)

Same number of labs, but one stand added this semester. Precision regressed further back to 8.74 s, but Performance improved to 0.31 s this period. All operationally valid tests this period report using Rod Batch N. Most labs have now moved to Catalyst Batch 23AB, but one lab is still using Catalyst Batch 20AB. No labs used Catalyst Batch 19BA.

D7216 (EOEC) / D7216 (LDEOC)

 All calibrations are using Ref Oil SL-107. A Round Robin to establish targets and acceptance bands for the new HNBR elastomer for EOEC was completed. The new elastomer test EOECH for PC-12 has been created and calibration test assignments are available for scheduling through TMC.

• <u>D7528</u> (ROBO)

 Same number of labs, but one stand added this semester. Precision fell further to 0.20 (target 0.15). Performance moved back (-0.37) after being very Mild in the previous semester.

D02.B0.07 TMC Monitored Tests

Sulfated Ash

October 1, 2024 - March 31, 2025

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change shown in parentheses)

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	10
Total		10

Number of Labs Reporting Data: 5 Fail Rate of Operationally Valid Tests: 0%

Statistically Unacceptable	No. Of
Tests (OC)	Tests
No Failed tests	0

 No operationally invalid or statistically unacceptable tests this report period.

Period Precision and Severity Estimates

Total Deposits, mg	n	df	Pooled s	Mean ∆/s
Current Targets	81	78	0.07	
10/1/19 through 3/31/20	7	4	0.04	-0.71
4/1/20 through 9/30/20	8	5	0.03	-0.30
10/1/20 through 3/31/21	8	5	0.02	-0.35
4/1/21 through 9/30/21	10	7	0.15	0.37
10/1/21 through 3/31/22	9	6	0.05	-0.07
4/1/22 through 9/30/22	8	6	0.06	-0.38
10/1/22 through 3/31/23	11	8	0.04	-0.71
4/1/23 through 9/30/23	10	7	0.04	-0.46
10/1/23 through 3/31/24	11	8	0.02	-0.47
4/1/24 through 9/30/24	9	7	0.04	-0.45
10/1/24 through 3/31/25	10	7	0.04	0.03

A Program of ASTM International

Sulfated Ash, mass% Pooled s

October 1, 2024 - March 31, 2025

A Program of ASTM Interna

Sulfated Ash, mass%

Mean Δ/s

Sulfated Ash, mass%

Mean Δ/s

D874 (Sulfated Ash) Status

- Precision (Pooled s) remained at 0.04 again this semester.
- Performance (Mean Δ /s) moved closer to target at 0.03 s
- Labs with remaining Reference Oil 90 will be assigned until their supply is consumed (6 TESTKEYs total). TMC inventory of Reference Oil 90 is only used for fill requests for Daily QC.
- Thirteen (13) new Reference Oil 92 results completed in past year. Should be able to get four or five more runs and update the RO 92 targets around the end of the year.

D874 INDUSTRY OPERATIONALLY VALID DATA

TEST SAMPLE PERCENT SULFATED ASH

A program of ASTM Internationa

D874 INDUSTRY OPERATIONALLY VALID DATA

TEST SAMPLE PERCENT SULFATED ASH

A Program of ASTM Internationa

Sulfated Ash, mass%

Mean

October 1, 2024 - March 31, 2025

https://www.astmtmc.org

Sulfated Ash, mass%

Standard Deviation

OCT APR OCT APR OCT APR OCT APR OCT APR '20 '21 '22 '23 '24 '21 '22 '23 '24 '25

1.00

TABLE of CONTENTS

Reference Oil Inventory

D874

Oil	Year Rec'd By TMC ^A	Tests	TMC Inventory, gallons	Gallons Shipped last 6 months	Estimated Life
820-2	2001	D874	5.91	0.08	5+ years
90 ^{<i>B</i>}	2005	D874QC	2.23	0.26	<mark>1.5 years</mark>
91	2006	D874	2.90	0.08	5+ years
92	2020	D874	52.44	0.08	5+ years

A Integrity of TMC reference oils is confirmed annually by analytical QC testing of chemical and physical properties.
B TMC Inventory of Reference Oil 90 is now only used for D874QC Samples (1L sizes)

D02.B0.07 TMC Monitored Tests

>> ASTM D 5133

Gelation Index (GI)

October 1, 2024 - March 31, 2025

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change since last Semi-Annual Report)

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	62
Failed Calibration Test	OC	7
Operationally Invalidated by Lab	LC / LS / LN / XC / XS	3
Operationally Invalidated After Initially Reported as Valid	RC/RS	0
Acceptable Discrimination Tests	AS	34
Failed Discrimination Tests	OS	3
Informational Runs	NN / MN	0
Total		109

Number of Labs Reporting Data: Fail Rate of Operationally Valid Calibration Tests: 10.1 % (previous 19.4%) Fail Rate of Operationally Valid Discrimination Tests:

9 (previous 9) 8.3 % (previous 0%)

Statistically Unacceptable Calibration Tests (OC)	No. Of Tests
Gelation Index Severe	4
Gelation Index Mild	3
Total	7

- Of the SEVEN "OC" tests
 - 1-GIC 18
 - 2-GIA 17
 - 4–1009
- Three between -1.96 and -3.0 sd from target
- Four greater than +4.0 sd from target

Statistically Unacceptable Discrimination Tests (OS)	No. Of Tests
Gelation Index Severe (> 7.2)	3
Total	3

There were Three Failing Discrimination Runs this Semester

Tests Excluded From Statistics (Operationally or Otherwise)	Validity Code	No. Tests
Invalidated Runs	LC, LS, LN, RC, RS	0
Aborted Runs	XC, XS	3
Informational Runs (Acceptable Result)	NN	0
Informational Runs (Unacceptable Result)	MN	0
Total		3

- ONE Aborted Run due to Data Recorder Failure
- ONE Aborted Run due to Power Outage
- ONE Aborted Run due to High Torque

Period Precision and Severity Estimates

Gelation Index	n	df	Pooled s	Mean ∆/s
Targets Updated 20201001 ¹	34	32	1.44	
4/1/20 through 9/30/20	52	48	2.23	-0.11
10/1/20 through 3/31/21 ²	116	113	3.74	-0.86
4/1/21 through 9/30/21	75	73	1.71	-0.20
10/1/21 through 3/31/22	61	59	1.55	-0.84
4/1/22 through 9/30/22	57	55	1.28	-0.41
10/1/22 through 3/31/23	84	80	3.83	-0.08
4/1/23 through 9/30/23	62	59	1.34	-0.21
10/1/23 through 3/31/24	57	54	1.64	-0.03
4/1/24 through 9/30/24	62	59	2.09	-0.92
10/1/24 through 3/31/25	69	66	1.81	-0.25

¹Target precision based upon GIA17 and 1009 reference oils 10/1/2020 ²Changed from bath to head-based monitoring scheme 10/1/2020

D5133 Precision Estimates

Gelation Index Pooled s

*Changed from bath to head-based monitoring scheme

D5133 Severity Estimates

Gelation Index

Mean Δ /s

*Changed from bath to head-based monitoring scheme

October 1, 2024 - March 31, 2025

Drogram of ASTM Int

D5133: Gelation Index Test Status

- Fail rate of operationally valid tests dropped to 10.1%
 - Fail rate last period was 19.4%
- Three (3) operationally valid discrimination runs failed this period
 - ZERO (0) discrimination runs failed last period
- Precision (Pooled s) was 1.81, moving closer to target (1.44).
- Performance (Mean $\Delta/s)$ improved to $-0.25\ s$ showing that the testing is running slightly mild

GELATION INDEX

October 1, 2024 – March 31, 2025

D5133 GELATION INDEX INDUSTRY OPERATIONALLY VALID DATA

GELATION INDEX

October 1, 2024 – March 31, 2025

D5133 Performance by Oil

Gelation Index

Mean

D5133 Performance by Oil

D5133 Performance by Oil

ASTM D5133 (GI): OCT23 – MAR24 Results

Reference Oil Inventory

GI (D5133)

Oil	Year Rec'd By TMC ^A	Tests	TMC Inventory, gallons	Gallons Shipped last 6 months	Estimated Life
58 ^{<i>B</i>}	1998	GI	111.5	0.19	5+ years
GIA17	2017	GI	5.15	0.16	5+ years
GIC18	2018	GI	7.82	0.14	5+ years
1009	2002	GI	33.30	0.11	5+ years

Integrity of TMC reference oils is confirmed annually by analytical QC testing of chemical and physical properties.
^B Reference Oil 58 is used in multiple Bench Test Areas and is the Discrimination Oil in D5133 (GI)

D02.B0.07 TMC Monitored Tests

 \sum

NOACK Volatility

October 1, 2024 - March 31, 2025

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change since last Semi-Annual Report)

D5800: Evaporation Loss of Lubricating Oil by Noack Method

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	177
Failed Calibration Test	OC	9
Operationally Invalidated by LAB	LC	3
Operationally Invalidated by TMC	RC	1
Aborted Test	XC	1
Acceptable Shakedown Run	NN	0
Unacceptable Shakedown Run	MN	0
Total		191

Number of Labs Reporting Data: 14 Fail Rate of Operationally Valid Tests: 4.86% (last Semester 2.12%)

October 1, 2024 - March 31, 2025

Test Monitoring Center

D5800: Evaporation Loss of Lubricating Oil by Noack Method

Statistically Unacceptable Tests (OC)	No. Of Tests
Ei Level 3 Alarm Mild	3
Zi Level 2 Alarm Severe	1
Zi Level 2 Alarm Mild	2
Zi Level 2 and Ei Level 3 Alarms, Mild	2
Zi Level 2 and Ei level 3 Alarms, SEVERE	1

NINE OC tests were on six different rigs at five different labs.
EIVE (I) operationally valid tests exceeded +3.0 s this period

• FIVE (!) operationally valid tests exceeded ± 3.0 s this period.

D5800: Evaporation Loss of Lubricating Oil by Noack Method

Failed (OC) Details	Procedure	Model	No. Tests
Ei Level 3 Alarm: Rig (E1-7) Mild, too imprecise to predict SA	D	NS2	1
Ei Level 3 Alarm: Rig (BA-2, BA-3) Mild, too imprecise to predict SA	В	NCK25G	2
Zi Level 2 Alarm: Rig (D3-1) Severe	В	NCK25G	1
Zi Level 2 Alarm: Rig (G-10, V-4) Mild	D	NS2	2
Zi Level 2 and Ei Level 3 Alarms, (G-10, V-4) Mild	D	NS2	2
Zi Level 2 and Ei Level 3 Alarms, (BA-3) Severe	В	NCK25G	1
Total			9
Fail Data of Operationally Valid Tests	. 2 1 20/		

Fail Rate of Operationally Valid Tests: 2.12%

D5800: Evaporation Loss of Lubricating Oil by Noack Method

Operationally Invalid Tests (LC, RC)

Four labs had invalidated calibration runs this period

- One test was invalidated by TMC due to DAILY QC Out of Range
- Two tests were invalidated by Lab due to use of wrong oil or wrong test unit
- One test was invalidated by Lab due to broken crucible

D5800 Technical Memos

No D5800 technical memos were issued by the TMC this period.

D5800: Evaporation Loss of Lubricating Oil by Noack Method

Period Precision and Severity Estimates

Sample Evaporation Loss, mass %	n	df	Pooled s	Mean ∆/s
Targets Effective 02/07/20 ¹	78	75	0.0465	
4/1/20 through 9/30/20 ¹	136	133	0.0659	0.35
10/1/20 through 3/31/21 ¹	140	137	0.0495	0.53
4/1/21 through 9/30/211	136	133	0.0510	0.45
10/1/21 through 3/31/22 ¹	139	136	0.0463	0.24
4/1/22 through 9/30/22 ¹	136	133	0.0469	-0.10
10/1/2022 through 3/31/23 ¹	136	133	0.0545	-0.15
4/1/2023 through 9/30/23 ¹	169	166	0.0586	0.33
10/1/2023 through 3/31/24 ¹	174	171	0.0576	0.37
4/1/2024 through 9/30/24 ¹	189	187	0.0551	0.23
10/1/2024 through 3/31/25 ¹	186	183	0.0627	0.21

¹Began monitoring natural log transformed test results on 20200207 making logarithmic scale changes for target and period precision estimates starting April 2020 report period

D5800 Precision Estimates

*Began monitoring natural log transformed test results on 20200207 making logarithmic scale changes for target and period precision estimates starting April 2020 report period.

October 1, 2024 - March 31, 2025

Test Monitoring Center https://www.astmtmc.org

D5800 Severity Estimates

D5800 Lab Severity Estimates

Sample Evaporation Loss, mass %

Mean Δ/s

D5800 Performance by Oil

Sample Evaporation Loss, mass % Mean 2.8414 .8368 395 .8486 .8431 2.8282 98 98 2.9000 2 8 2.8] 2.81 \sim \sim \sim 2.8000 .6650 6647 6589 572 2.6670 2.6389 2.6505 379 2.7000 ō ö Ņ. N. 2 N 2 2.5435 2.5402 2.5393 2.5436 2.5351 Oil VOLC12 \sim 5282 2.5120 526 2.6000 2. N. Oil VOLD12 2.5000 Oil VOLE12 2.4000 2.3000 OCT APR OCT APR OCT APR OCT APR '21* '22* '22* '23* '23* '24* '25* '24*

*Results transformed to natural log per updated LTMS 20200207

October 1, 2024 - March 31, 2025

Test Monitoring Center

D5800 Performance by Oil

*Results transformed to natural log per updated LTMS 20200207

October 1, 2024 - March 31, 2025

Test Monitoring Center

D5800 Performance by Oil

All Procedures: OCT2024 – MAR2025 Results

October 1, 2024 - March 31, 2025

A Program of ASTM Internat

EVAPORATION LOSS, MASS%

EVAPORATION LOSS, MASS%

D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA

ALL

D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA

ALL

D5800: Evaporation Loss of Lubricating Oil by Noack Method and Rig Model

Performance Comparison Sample Evaporation Loss, Mass %

Procedure	n	df	Pooled s	Mean ∆/s
Procedure B (NCK2, NCK25G)	108	105	0.0556	0.81
Procedure D (NS2)	78	75	0.0496	-0.63

Model	n	df	Pooled s	Mean ∆/s
NCK2 (B)	1	0	n/a	0.34
NCK25G (B)	107	104	0.0558	0.81
NS2 (D)	78	75	0.0496	-0.63

1 (+0) Procedure B NCK2 Rig 23 (+0) Procedure B NCK25G Rigs 15 (+0) Procedure D NS2 Rigs

D5800: Evaporation Loss of Lubricating Oil by Noack Method: Industry Procedure B

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	104
Failed Calibration Test	OC	4
Total		108

Number of Labs Reporting Data: 2 Fail Rate of Operationally Valid Tests: 1.94%

Procedure B: OCT2024 – MAR2025 Results

October 1, 2024 - March 31, 2025

A Program of ASTM Internat

B only

D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA PROCEDURE B ONLY EVAPORATION LOSS, MASS%

A Program of ASTM International

B only

D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA PROCEDURE B ONLY EVAPORATION LOSS, MASS%

A Program of ASTM Internation

B only

D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA PROCEDURE B ONLY EVAPORATION LOSS, MASS%

D5800: Evaporation Loss of Lubricating Oil by Noack Method: Industry Procedure D (NS2)

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	73
Failed Calibration Test	OC	5
Total		78

Number of Labs Reporting Data: 6 Fail Rate of Operationally Valid Tests: 2.32%

Procedure D (NS2): OCT2024 – MAR2025 Results

D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA Procedure D Only

D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA Procedure D Only EVAPORATION LOSS, MASS%

D5800: Evaporation Loss of Lubricating Oil by Noack Method: Industry Model NCK2

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	1
Failed Calibration Test	OC	0
Total		1

Number of Labs Reporting Data: 1 Fail Rate of Operationally Valid Tests: 0.0 %

MODEL NCK2: OCT2024 – MAR2025 Results

NCK2 only

ONLY

NCK2

MODEL

Count in Completion Date Order

NCK2 only

D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA MODEL NCK2 ONLY EVAPORATION LOSS, MASS%

NCK2 only D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA MODEL NCK2 ONLY EVAPORATION LOSS, MASS%

D5800: Evaporation Loss of Lubricating Oil by Noack Method: Industry Model NCK25G

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	103
Failed Calibration Test	OC	4
Total		107

Number of Labs Reporting Data: 10 Fail Rate of Operationally Valid Tests: 2.06%

MODEL NCK25G: OCT2024 – MAR25 Results

Count in Completion Date Order

only

D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA MODEL NCK25G ONLY

NCK25G only

D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA MODEL NCK25G ONLY EVAPORATION LOSS, MASS%

NCK25G only D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA MODEL NCK25G ONLY EVAPORATION LOSS, MASS%

Reference Oil Inventory D5800

Oil	Year Rec'd By TMC [≁]	Tests	TMC Inventory, gallons	Gallons Shipped last 6 months	Estimated Life
VOLC12	2013	D5800	16.6	2.1	4 years
VOLD12	2013	D5800	14.8	2.0	4 years
VOLE12	2013	D5800	12.6	1.9	4 years
VOLD18	2018	D5800QC	516	46	5+ years

^A Integrity of TMC reference oils is confirmed annually by analytical QC testing of chemical and physical properties.

D5800: Evaporation Loss of Lubricating Oil by Noack Method: Semester Summary

Precision (Pooled s) regressed this semester to 0.0627, moving away from 0.0465 target.

Performance (Mean Δ/s) continues to be severe at +0.21 s.

• Procedure B rigs continue to trend severe (+0.81 s) while Procedure D rigs continue to trend mild (-0.63 s).

Only one NCK2 (Procedure B) rig ran a single calibration test this semester. All other Procedure B rigs were NCK25G units

D02.B0.07 TMC Monitored Tests

High Temperature Foam

October 1, 2024 - March 31, 2025

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change since last Semi-Annual report)

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	16
Failed Calibration Test	OC	1
Acceptable Discrimination Test	AS	8
Operationally Invalid, Reported as Valid	RC, RS	0
Operationally Invalid, Reported by Lab	LC, LS	0
Informational Run (Valid)	NN	0
Aborted Tests	XC, XS	0
Total		25

Number of Labs Reporting Data: 7 Fail Rate of Operationally Valid Calibration Tests: 5.9%

Statistically Unacceptable Tests (OC, OS)	No. Of Tests
Foam Tendency Mild	0
Foam Tendency Severe	1
Total	1

• There was ONE statistically unacceptable calibration test this period.

Operationally Unacceptable Tests (RC, LC, LS, XC, XS)	No. Of Tests
LC (Lab Invalid Calibration Run)	0
XC (Lab Aborted Calibration Run)	0
RC (TMC Invalidated Calibration Run)	0
XS (Lab Aborted Discrimination Run)	0
LS (Lab Invalid Discrimination Run)	0
Total	0

• There were ZERO operationally invalid results this report period.

Informational Runs (MN, NN)	No. Of Tests
Non-blind Informational run on-target and valid (NN)	0
Non-blind Informational run invalid (MN)	0
Total	0

• There were no informational runs this report period.

D6082: High Temperature Foam (Tendency)

Period Precision and Severity Estimates

Foam Tendency, ml	n	df	Pooled s	Mean ∆/s
Targets updated 202010011	18	17	9	
10/1/20 through 3/31/21	12	10	7	-0.48
4/1/21 through 9/30/21	14	13	7	-0.48
10/1/21 through 3/31/22	13	12	7	-0.57
4/1/22 through 9/30/22	15	14	4	-0.52
10/1/22 through 3/31/23	16	15	10	-0.69
4/1/23 through 9/30/23	14	13	4	-0.68
10/1/23 through 3/31/24	19	18	10	-0.62
4/1/24 through 9/30/24	18	17	13	-0.01
10/1/24 through 3/31/25	17	16	18	0.88

¹Target precision updated to current reference oil FOAMB18

D6082: High Temperature Foam (Stability)

Period Precision and Severity Estimates

Foam Stability @ 1 min, ml	n	Mean	S	
Current Targets	18	0.00	0.00	
10/1/20 through 3/31/21	12	No non-zero occurrences		
4/1/21 through 9/30/21	14	No non-zero occurrences		
10/1/21 through 3/31/22	13	No non-zero occurrences		
4/1/22 through 9/30/22	15	No non-zero occurrences		
10/1/22 through 3/31/23	16	No non-zero occurrences		
4/1/23 through 9/30/23	14	No non-zero occurrences		
10/1/23 through 3/31/24	19	No non-zero occurrences		
4/1/24 through 9/30/24	18	No non-zero occurrences		
10/1/24 through 3/31/25	18	No non-zero occurrences		

A Program of ASTM International

D6082 Performance by Oil

October 1, 2024 - March 31, 2025

Test Monitoring Center

Foam Tendency, ml

Pooled s

Current Period Severity Estimates by Lab Foam Tendency, ml

D6082: High Temperature Foam Status

- Foam Tendency Precision (Pooled s) has fallen further back (to 18) this semester. Previous semester Precision was 13.
- Performance (Mean Δ /s) has moved to severe at +0.88s.
- NEW FOAMB18 final targets, based upon 131 data points, were approved by the Surveillance Panel in June.
- No non-zero occurrences of Foam Stability
- No discrimination runs (on TMC oil 66) failed this semester.

D6082 HIGH TEMPERATURE FOAM INDUSTRY OPERATIONALLY VALID DA

FOAM TENDENCY

D6082 HIGH TEMPERATURE FOAM INDUSTRY OPERATIONALLY VALID DA

FOAM TENDENCY

October 1, 2024 – March 31, 2025

D6082 HIGH TEMPERATURE FOAM INDUSTRY OPERATIONALLY VALID DA Last 120 Data Points FOAM TENDENCY

TABLE of CONTENTS

Reference Oil Inventory

D6082

Oil	Year Rec'd By TMC ^A	Tests	TMC Inventory, gallons	Gallons Shipped last 6 months	Estimated Life
FOAMB18	2018	D6082	67.18	1.11	5+ years
66	2002	D6082	66.3	1.40	5+ years

^A Integrity of TMC reference oils is confirmed annually by analytical QC testing of chemical and physical properties.
 ^B D874QC Samples (1L sizes) could quickly deplete Reference Oil 90 availability.

D02.B0.07 TMC Monitored Tests

October 1, 2024 - March 31, 2025

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change since last Semi-Annual report)

D6335: Deposits by TEOST-33C

Test Status	Validity Code	No. Tests
Acceptable Calibration Tests	AC	21
Failed Calibration Tests	OC	8
Operationally Invalid or Aborted by Lab	LC, XC	4
Informational Run (Test Result In Range)	NN	1
Informational Run (Test Result Out of Range)	MN	5
Donated Industry Runs (Ref Oil 75-2 Round Robin)	NG	14
Total		53

Number of Labs Reporting Data: 8 (9 Labs Last Period) Fail Rate of Operationally Valid Tests: 27.6% (22.0% Last Period)

D6335: Deposits by TEOST-33C

Statistically Unacceptable Tests (OC)	No. Of Tests
Total Deposits Severe	5
Total Deposits Mild	3
Total	8
Operationally Invalid Tests (LC, XC)	No. Of Tests
XC: Instrument Failure (aborted run)	1
LC: Lab Invalidated Run (thermocouple failure)	2
LC: Lab Invalidated Run (rod pre-weight not recorded)	1

• RO reblend 75-2 approved for use with current RO 75-1 acceptance range.

D6335: Deposits by TEOST-33C

Period Precision and Severity Estimates

Total Deposits, mg	n	df	Pooled s	Mean ∆/s
Updated Targets 20201001 ¹	46	44	4.85	
10/1/20 through 3/31/21	26	23	8.39	0.42
4/1/21 through 9/30/21	31	28	8.27	-0.36
10/1/21 through 3/31/22	27	25	6.22	0.55
4/1/22 through 9/30/22	29	27	10.32	0.80
10/1/22 through 3/31/23	35	33	8.53	0.84
4/1/23 through 9/30/23	30	28	6.57	0.03
10/1/23 through 3/31/24	34	32	6.19	0.63
4/1/24 through 9/30/24	41	39	8.58	0.84
10/1/24 through 3/31/25	29	27	10.56	0.43

¹Target precision updated to include only current oils 75-1 and 435-2

D6335 Precision Estimates

Total Deposits, mg Pooled s

D6335 Severity Estimates

October 1, 2024 - March 31, 2025

Test Monitoring Center

D6335: Deposits by TEOST-33C Status

- Precision (Pooled s) regressed further away from target this semester (10.56 s vs 8.58 s)
- Performance (Mean Δ/s) improved this this period moving to 0.43s (0.84 s last semester)
- Fail rate increased this semester to 27.6% this semester, last semester fail rate was 22.0%.
- All tests this period report used Rod Batch N.
- Reblend RO 75-2 has replaced batch 75-1. Surveillance Panel voted to carry-forward the existing acceptance range for 75-2, although round robin data is available to adjust the RO 75-2 targets if needed. RO 75-1 TESTKEYs will be assigned to consume inventories remaining at the labs.

TOTAL DEPOSITS MG

TEOST -- 33C INDUSTRY OPERATIONALLY VALID DATA

TOTAL DEPOSITS MG

D6335 Performance by Oil

Total Deposits, mg

Mean

October 1, 2024 - March 31, 2025

A Program of ASTM Internation

D6335 Performance by Oil

October 1, 2024 - March 31, 2025

A Program of ASTM Internati

TABLE of CONTENTS

Reference Oil Inventory TEOST

Oil	Year Rec'd By TMC ^A	Tests	TMC Inventory, gallons	Gallons Shipped last 6 months	Estimated Life
<mark>75–1</mark>	<mark>2016</mark>	TEOST	<mark>0.00</mark>	<mark>0.00</mark>	None
75-2	2024	TEOST	6.86	0.41	5+ years
435-2 ^{<i>B</i>}	2010	TEOST	31.73	0.66	5+ years

^A Integrity of TMC reference oils is confirmed annually by analytical QC testing of chemical and physical properties. ^B Multi-test oil; estimated aliquot reserved for bench testing.

D02.B0.07 TMC Monitored Tests

>> ASTM D 6417

October 1, 2024 - March 31, 2025

A Program of ASTM Internations

D6417 Calibrated Labs and Stands*

(change since last Semi-Annual report)

D6417: Estimation of Engine Oil Volatility by Capillary GC

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	19
Failed Calibration Test	OC	1
Total		20

Number of Labs Reporting Data: 7 Fail Rate of Operationally Valid Tests: 5.0%

D6417: Estimation of Engine Oil Volatility by Capillary GC

Statistically Unacceptable Tests (OC)	No. Of Tests
Volatility Loss Mild	1
Volatility Loss Severe	0

Operationally Invalid Tests (LC)	No. Of Tests
Daily QC was out of range (Severe)	0

•No D6417 TMC technical updates were issued this report period.

D6417: Estimation of Engine Oil Volatility by Capillary GC

Period Precision and Severity Estimates

Area % Volatized @ 371°C	n	df	Pooled s	Mean ∆/s
Initial Selected Oils from RR	54	51	0.39	
4/1/21 through 9/30/21	17	14	0.39	-0.28
10/1/21 through 3/31/22	20	17	0.51	0.13
4/1/22 through 9/30/22	19	16	0.48	-0.67
10/1/22 through 3/31/23	18	15	0.43	0.41
4/1/23 through 9/30/23	16	13	0.34	-0.02
10/1/23 through 3/31/24	18	15	0.27	0.25
4/1/24 through 9/30/24	20	17	0.40	-0.02
10/1/24 through 3/31/25	20	17	0.43	-0.16

D6417 Precision Estimates

October 1, 2024 - March 31, 2025

A Program of ASTM Interna

D6417 Severity Estimates

Area % Volatized @ $371^{\circ}C$ Mean Δ/s

D6417 Lab Severity Estimates

October 1, 2024 - March 31, 2025

Test Monitoring Center

D6417 VOLATILITY BY GC INDUSTRY OPERATIONALLY VALID DATA

SAMPLE AREA % VOLATIZED

D6417 VOLATILITY BY GC INDUSTRY OPERATIONALLY VALID DATA LAST 90 Points SAMPLE AREA % VOLATIZED

A Program of ASTM International

October 1, 2024 - March 31, 2025

A Program of ASTM Internation

Area % Volatized @ 371°C Standard Deviation

October 1, 2024 - March 31, 2025

Distribution of VOLvi

0.79

D6417: Estimation of Engine Oil Volatility by Capillary GC Status

- Precision (Pooled s) continues to be remarkably consistent and on target (again) this past semester.
- Performance (Mean Δ /s) moved slightly mild this semester but is still near target.
- CUSUM severity continuing to be relatively flat this semester

Reference Oil Inventory

D6417

Oil	Year Rec'd By TMC ^A	Tests	TMC Inventory, gallons	Gallons Shipped last 6 months	Estimated Life
52 ^{<i>B</i>}	1995	D6417	59.38	<0.01	5+ years
55	1995	D6417	65.89	<0.01	5+ years
58	1998	D6417, D6417QC	111.5	<0.01	5+ years

^A Integrity of TMC reference oils is confirmed annually by analytical QC testing of chemical and physical properties. ^B Reference Oil 58 is used in multiple Bench Test Areas.

October 1, 2024 - March 31, 2025

A Brogstam of ASTM International

D02.B0.07 TMC Monitored Tests

Ball Rust Test (BRT)

October 1, 2024 - March 31, 2025

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change since last Semi-Annual report)

BRT Test Activity*

Test Status	Validity Code	Number of Tests
Acceptable Calibration Test	AC	155
Failed Calibration Test	OC	2
Operationally Invalid	LC, RC, LS, RS	4
Aborted Run	XC, XS	2
Shakedown Run (Result Within Acceptance Band)	NN	7
Shakedown Run (Result Outside Acceptance Band)	MN	0
Total		170

• 5 labs reported data

BRT Failed Tests

Failed Parameter (OC)	Number of Tests
Severe (low) Average Gray Value	1
Mild (high) Average Gray Value	1
Total	2

RO 82-1	One Mild Tests
RO 86	
RO 87	
RO 1006	One Severe Tests

A Program of ASTM Internat

BRT Failed Tests (OC) by Lab

Failed Parameter		LTMS Lab				
ralleu ralallietei	А	В	D	G	L	#
Severe Average Gray Value	1	0	0	0	0	1
Mild Average Gray Value	0	0	0	1	0	1
Total	1	0	0	1	0	2

BRT Lost Tests*

Failed Parameter (LC, RC, XC)	Number of Tests
Acid Solution Issue (LC)	2
Power Outage (LC)	1
AGV Analysis Issue (LC)	1
Aborted due to Acid Pump Failure (XC)	1
Aborted due to Incorrect Acid Delivery Time (XC)	1
Total	6

*Invalid (LC, RC) and Aborted (XC) calibration tests

BRT Lost Tests by Lab

Causa		LTMS Lab				
Cause	А	В	D	G	L	#
Acid Solution Problem	0	0	0	2	0	2
Power Outage	0	0	0	1	0	1
AGV Analysis Error	0	0	0	1	0	1
Acid Pump Failure	0	0	1	0	0	1
Incorrect Acid Delivery Time	0	0	0	1	0	1
Total	0	0	1	5	0	6

BRT (D6557) Rust Protection Test

Average Gray Value	n	df	Pooled s	Mean ∆/s
4/1/21 through 9/30/21	191	188	11.27	-0.20
10/1/21 through 3/31/22	141	138	16.28	0.12
4/1/22 through 9/30/22	154	151	21.10	-0.29
10/1/22 through 3/31/23	165	162	15.56	-0.17
4/1/23 through 9/30/23	171	168	17.56	0.34
10/1/23 through 3/31/24	183	179	13.75	0.32
4/1/24 through 9/30/24	166	162	14.41	-0.07
10/1/24 through 3/31/25	170	168	7.90	-0.61

Period Precision and Severity Estimates

*Period statistics for all Valid Reference Oil Results (pooled)

D6557: Ball Rust Test Status

- With the suspension of Reference Oils 86 and 87 due to severe test results, most data was generated on Reference Oil 1006 (High Reference Oil) and Reference Oil 82–1 (Low Reference Oil). However, Reference Oil 82–1 also started to show a severe trend at the end of previous semester (as well as being almost depleted from TMC Inventory), and therefore it too was removed from assignment rotation leaving only Reference Oil 1006 available for assignments for most of the October 2024 to March 2025 semester.
- Ball Bearing Batch E was round-robin tested in RO's 1006 and 82-1 to determine if it could be a replacement for current Ball Bearing Batch D. Data supported the replacement and Batch E Ball Bearings are now available for use in the BRT with no change from the current Acceptance Bands for Reference Oils 1006 and 82-1. A follow-up Round Robin with RO's 86 and 87 with Ball Bearing Batch E is currently underway.

BALL RUST TEST INDUSTRY OPERATIONALLY VALID DATA

REFERENCE AVERAGE GRAY VALUE

A Program of ASTM International

BALL RUST TEST INDUSTRY OPERATIONALLY VALID DATA Last 500 Points **REFERENCE AVERAGE GRAY VALUE**

nttps://www.astmtmc.org

BRT Precision (Pooled s) Estimates

AGV

BRT Performance (Mean Δ /s) Estimates

AGV

October 1, 2024 - March 31, 2025

A Program of ASTM International

October 1, 2024 - March 31, 2025

A Program of ASTM Internat
Average Gray Value Standard Deviation

Average Gray Value

MEAN Δ/s

October 1, 2024 - March 31, 2025

Test Monitoring Center

Information Letters & Memos*

Test	Date	IL / Memo	Торіс
BRT	20240503	Mem24-016	Suspension of assignments of Reference Oils 86 and 87
BRT	20240914	Mem24-025	TMC Investigation of Reference Oil 86 and 87 Performance

*Available from TMC Website

October 1, 2024 - March 31, 2025

Reference Oil Inventory Estimated Life

Oil	TMC Inventory (gallons)	Quantity Shipped in last 6 months (gallons)	Total Assignments ¹ made over Semester	Estimated Life
1006	26.35	1.31	179	5+ years
<mark>82–1</mark>	<mark>0.5</mark>	<mark>0.0</mark>	<mark>5</mark>	<mark>< 1 year</mark>
86	49.0	0.0	6	5+ years
87	92.9	0.0	6	5+ years

¹- Includes Informational (i.e. "Shakedown") run assignments

D02.B0.07 TMC Monitored Tests

High Temperature Corrosion Bench Test (HTCBT)

October 1, 2024 - March 31, 2025

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change since last Semi-Annual report in parentheses)

HTCBT Test Activity*

Test Status	Validity Code	Number of Tests
Acceptable Calibration Test	AC	231
Failed Calibration Test	OC	19 ¹
Operationally Invalid, by lab	LC	3
Informational Test Aborted	XN	2
Information Run in Range	NN	5
Information Run out of Range	MN	4
Total		264

7 labs reported data (3 LESS from previous semester)

¹ A DECREASE of 2 from previous semester

HTCBT Failed Tests

Failed Parameter (OC)	Number of Tests
Lead Concentration Severe	6
Lead Concentration Mild	5
Copper Concentration Severe	1
Copper Concentration Mild	4
Lead and Copper Concentrations (both) Severe	3
Total	19

NOTE: Of the 19 failing tests 8 (42.1%) were on runs with 1005–5 Reference Oil 11 (57.9%) were on runs with 44–5 Reference Oil

October 1, 2024 - March 31, 2025

Drogram of ASTM Int

HTCBT Failed Tests by Lab

Failed Parameter (OC)		LTMS Lab								#	
		L	G		V	BB	BC	В	Р	BE	π
Lead Concentration Severe	2	0	2	0	1			0	1		
Lead Concentration Mild	0	0	1	0	0			0	4		
Copper Concentration Severe	0	1	0	0	0			0	0		
Copper Concentration Mild	0	0	4	0	0			0	0		
Lead and Copper Concentrations (both) Severe	0	1	2	0	0			0	0		
Totals	2	2	9	0	1			0	5		19

HTCBT Lost Tests*

Status (LC, XC, LN, XN)	Cause	#
Aborted (XN)	Informational run aborted due to Air Flow Problems	2
Total		2

*Invalid or Aborted calibration tests

HTCBT Lost Tests by Lab

Failed Parameter (LC, XC)		LTMS Lab							#		
		L	G	I	V	BB	BC	В	Р	BE	π
Informational Run Air Flow Issue	2	0	0	0	1	0	0	0	0	0	2
Total	2	0	0	0	0	0	0	0	0	0	2

HTCBT Test Status

- Most labs now using Batch P coupons although a few labs continue to test with Batch O coupons.
- Few TESTKEYs of Reference Oil 44-4 remaining at labs. Most labs now using Reference Oil 44-5.
- Three labs did not calibrate this semester, but one lab added a new stand this semester

HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA

COPPER CHANGE (ppm)

HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA LAST 600 DATA POINTS COPPER CHANGE (ppm)

October 1, 2024 - March 31, 2025

HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA

LEAD CHANGE (ppm)

HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA LAST 600 DATA POINTS LEAD CHANGE (ppm)

HTCBT (D6594): High Temperature Corrosion Bench Test

Date Range	n	df	Pooled s	Mean ∆/s
10/1/21 through 3/31/22	305	302	0.31	0.53
4/1/22 through 9/30/22	306	303	0.33	0.63
10/1/22 through 3/31/23	263	260	0.66	0.57
4/1/23 through 9/30/23	296	293	0.34	0.87
10/1/23 through 3/31/24	287	284	0.44	0.39
4/1/24 through 9/30/24	244	241	0.38	0.53
10/1/24 through 3/31/25	250	248	0.35	0.23

Period Precision and Severity Estimates: Copper Change

*Period statistics for all Valid Reference Oil Results (pooled)

HTCBT Precision (Pooled s) Estimates

COPPER CHANGE

HTCBT Performance (mean Δ/s) Estimates **COPPER CHANGE**

October 1, 2024 - March 31, 2025

https://www.astmtmc.org

HTCBT (D6594): High Temperature Corrosion Bench Test

Average Gray Value	n	df	Pooled s	Mean ∆/s
10/1/21 through 3/31/22	305	302	8.20	0.55
4/1/22 through 9/30/22	306	303	5.72	0.43
10/1/22 through 3/31/23	263	260	11.6	0.69
4/1/23 through 9/30/23	296	293	6.91	0.31
10/1/23 through 3/31/24	287	284	6.89	0.20
4/1/24 through 9/30/24	244	241	7.29	0.20
10/1/24 through 3/31/25	250	248	8.46	0.24

Period Precision and Severity Estimates: Lead Change

*Period statistics for all Valid Reference Oil Results (pooled)

HTCBT Precision (Pooled s) Estimates

HTCBT Performance (mean Δ/s) Estimates

LEAD CHANGE

0.69 0.70 0.55 0.60 0.43 0.50 0.31 0.40 0.24 0.20 0.30 0.20 **PBC** 0.20 0.10 0.00 APR OCT APR OCT APR OCT APR '22 '22 '23 '23 '24 '24 '25

October 1, 2024 - March 31, 2025

Drogram of ASTM Int

Copper Concentration* Mean

1005-5

October 1, 2024 - March 31, 2025

A Program of ASTM Internat

October 1, 2024 - March 31, 2025

A Program of ASTM Interna

HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA Oil 1005 — Only COPPER CHANGE (ppm)

October 1, 2024 - March 31, 2025

HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA Oil 1005 — Only LEAD CHANGE (ppm)

October 1, 2024 - March 31, 2025

October 1, 2024 - March 31, 2025

October 1, 2024 - March 31, 2025

Information Letters and Memos*

Test	Date	IL/Memo	Торіс
HTCBT			

No new Information Letters or Memos issued this semester.

*Available from TMC Website

Reference Oil Inventory Estimated Life

D6594

Oil	TMC Inventory (gallons)	Quantity Shipped in last 6 months (gallons)	Lab Assignments Made	Estimated Life
44-5	45.3	2.0	76	5+ year
1005-5	23.4 (Reserved drum - Additional oil available at the TMC)	5.6	182	5+ year

D02.B0.07 TMC Monitored Tests

Engine Oil Water Tolerance (EOWT)

October 1, 2024 - March 31, 2025

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change since last Semi-Annual report)

EOWT Test Activity by Treat Rate

Test Status	Validity	N by	Total			
	Coue	0.6%	1.0%	2.0%	3.0%	
Acceptable Calibration Test	AC	187	190	187	189	753
Failed Calibration Test	OC	0	1	2	3	6
Acceptable Information Run	NN	0	0	0	0	0
Unacceptable Information Run	MN	0	0	0	0	0
Invalid Calibration Test	LC, RC	0	0	0	0	0
Aborted Calibration Test	XC	1	1	1	1	4
Total		188	192	190	193	763

• 5 labs reported data

EOWT Test Activity by Reference Oil*

Test Status	Validity Code	Number by Refere	Total	
		77-3	79	
Acceptable Calibration Test	AC	373	380	753
Failed Calibration Test	OC	6	0	6
Acceptable Informational Test	NN	0	0	0
Unacceptable Informational Test	MN	0	0	0
Invalid Calibration Test	LC, RC	0	0	0
Aborted Calibration Test	XC	2	2	4
Total		381	382	763

• No Informational runs requested this semester

EOWT Failed Tests

Failed Parameter (ΩC)	1	Total			
	0.6%	1.0%	2.0%	3.0%	Totai
Severe Change in Flowrate	0	1	0	2	3
Mild Change in Flowrate	0	0	2	1	3
Total	0	1	2	3	6

EOWT Failed Tests by Lab

Eailed Parameter (OC)	LTMS Lab						
Falleu Falallielei (OC)	А	В	BE	G	I	L	#
Severe Change in Flowrate	3	N/A	0	0	0	0	3
Mild Change in Flowrate	3	N/A	0	0	0	0	3
Total	6	N/A	0	0	0	0	6

EOWT Lost Calibration Tests*

Cause		Number of Tests					
		1.0%	2.0%	3.0%			
Samples stored in oven too long	1	1	1	1	4		
Total	1	1	1	1	4		

*Invalid (LC,RC) and Aborted (XC) calibration tests

D6794: EOWT

Period Precision and Severity Estimates

Change in Filtration Rate	H ₂ O %	n	df	Pooled s	Mean ∆/s
10/1/24 through 3/31/25	ALL	759	757	3.74	0.08
10/1/24 through 3/31/25	0.6	187	185	3.44	-0.10
10/1/24 through 3/31/25	1.0	191	189	3.08	0.04
10/1/24 through 3/31/25	2.0	189	187	3.44	0.17
10/1/24 through 3/31/25	3.0	192	190	3.30	0.22

October 1, 2024 - March 31, 2025

A Drogram of ASTM Int

EOWT Test Status

- Change in Flowrate Average (CIFA) is moving milder as reduced severity estimates (Mean Δ/s) results were found for all four water treat levels as compared to previous semester.
- TMC is working with Reference Oil 79 supplier to determine if a reblend is possible.
 - Reference Oil 79 is also used in the EOFT and is the single Reference Oil for that Bench Test.

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 0.6% Water Treat Rate 20 — 25 ML CHANGE IN FLOWRATE AVG.

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 0.6% Water Treat Rate (Last 400 Data Points) 20 — 25 ML CHANGE IN FLOWRATE AVG.

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 1.0% Water Treat Rate 20 - 25 ML CHANGE IN FLOWRATE AVG.

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 1.0% Water Treat Rate (Last 400 Data Points) 20 — 25 ML CHANGE IN FLOWRATE AVG.

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 2.0% Water Treat Rate 20 - 25 ML CHANGE IN FLOWRATE AVG.

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 2.0% Water Treat Rate (Last 400 Data Points) 20 — 25 ML CHANGE IN FLOWRATE AVG.

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 3.0% Water Treat Rate 20 - 25 ML CHANGE IN FLOWRATE AVG.

October 1, 2024 - March 31, 2025

Test Monitoring Center

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 3.0% Water Treat Rate (Last 400 Data Points) 20 — 25 ML CHANGE IN FLOWRATE AVG.

EOWT MEAN CFA's (%) by Reference Oil

CFA

October 1, 2024 - March 31, 2025

Test Monitoring Center A Program of ASTM Interna

https://www.astmtmc.org

EOWT Precision (Pooled s) Estimates

CFA

October 1, 2024 - March 31, 2025

A Program of ASTM International

https://www.astmtmc.org

EOWT Performance (Mean Δ /s) Estimates

A Program of ASTM International

EOWT Results by Reference Oil: All Water Levels

EOWT 0.6% Results by Reference Oil

EOWT 1.0% Results by Reference Oil

EOWT 2.0% Results by Reference Oil

EOWT 3.0% Results by Reference Oil

Information Letters*

Test	Date	IL	Торіс
			No new information letters this period.

*Available from TMC Website

Reference Oil Inventory Estimated Life

EOWT & EOFT

Oil	TMC Inventory (gallons)	TEST	Total Assignments made over Semester	Volume of Samples Assigned (Gallons)	Estimated Life ¹
77-3	350.0	EOWT	390	24.3	5+ years
<mark>79</mark>	<mark>78.3</mark>	EOWT EOFT	<mark>391</mark> 117	<mark>26.2</mark> 7.9	<mark>~1 year</mark>

1-Based upon Sample Assignment Rate from past 6 months.

D02.B0.07 TMC Monitored Tests

Engine Oil Filterability Test (EOFT)

October 1, 2024 - March 31, 2025

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change since last Semi-Annual report)

EOFT Test Activity*

Test Status	Validity Code	Number of Tests
Acceptable Calibration Test	AC	114
Failed Calibration Test	OC	2
Invalid Calibration Test	LC	1
Acceptable Informational Run	NN	0
Unacceptable Informational Run	MN / XN	0
Total		117

- 98.3% Acceptable Calibration (AC) Testing Rate
 - 5 labs reported data this semester

EOFT Failed Tests

Failed Parameter	Number of Tests
Change in Flow Average (CIFA) Severe	2
Change in Flow Average (CIFA) Mild	0
Total	2

EOFT Failed Tests by Lab

Failed Parameter		LTMS Lab						
		В	G		L	BE	#	
Change in Flow Average (CIFA) Severe	0	N/A	1	0	1	0	2	
Change in Flow Average (CIFA) Mild	0	N/A	0	0	0	0	0	
Totals	0	N/A	1	0	1	0	2	

EOFT Lost Tests*

Status	Cause	No. of Tests
Invalid (L,R)	Oven Temperature Issue	1
Aborted (X)		0
Total		1

*Invalid and aborted calibration tests

EOFT Information/Shakedown Tests

Informational / Shakedown Results	Number of Tests
None	0
Total	0

EOFT Test Status

- Change in Flow Average (CIFA) continues to trend severe although CUSUM slope appears to be leveling off this semester.
- Precision (Pooled s) rose to 5.76 s, highest it has been in several years.
- Performance (Mean Δ/s) was found to be 0.41, the lowest it has been since October 2021.

EOFT INDUSTRY OPERATIONALLY VALID DATA

20 - 25 ML CHANGE IN FLOWRATE AVERAGE (%)

Test Monitoring Center

EOFT INDUSTRY OPERATIONALLY VALID DATA Last 250 Data Points 20 — 25 ML CHANGE IN FLOWRATE AVERAGE (%)

EOFT Precision Estimates CIFA Pooled s

October 1, 2024 - March 31, 2025

A Program of ASTM International

EOFT Severity Estimates

October 1, 2024 - March 31, 2025

A Program of ASTM Internationa

October 1, 2024 - March 31, 2025

Test Monitoring Center

Information Letters*

Test	Date	IL	Торіс
			No new information letters this period.

*Available from TMC Website

Reference Oil Inventory Estimated Life

EOWT & EOFT

Oil	TMC Inventory (gallons)	TEST	Total Assignments made over Semester	Volume of Samples Assigned (Gallons)	Estimated Life ¹
77-3	350.0	EOWT	390	24.3	5+ years
<mark>79</mark>	<mark>78.3</mark>	EOWT EOFT	<mark>391</mark> 117	<mark>26.2</mark> 7.9	<mark>~1 year</mark>

1-Based upon Sample Assignment Rate from past 6 months.

D02.B0.07 TMC Monitored Tests

ASTM D 7097

Medium High Temperature TEOST (MTEOS)

October 1, 2024 - March 31, 2025

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change since last Semi-Annual report)

D7097: Deposits by MTEOS

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	64
Failed Calibration Test	OC	8
Operationally Invalidated by Lab	LC	0
Operationally Invalidated by TMC	RC	1
Operationally Invalid (Aborted)	XC	0
Acceptable Informational Run	NN	1
Unacceptable Informational Run	MN	0
Total		74

Number of Labs Reporting Data: 11 (+0) Fail Rate of Operationally Valid Tests: 11.1% (13.2% last period)

October 1, 2024 - March 31, 2025

https://www.astmtmc.or/

D7097: Deposits by MTEOS

Statistically Unacceptable Tests (OC)	No. Of Tests
Total Deposits Severe	7
Total Deposits Mild	1
Total	8

FOUR Labs had OC results. All SEVEN Severe fails were on RO 434-3 One Mild fail on RO 432.

D7097: Deposits by MTEOS Summary of Invalid Tests

Operationally Invalid Tests (LC, RC, XC)	Validity Code	No. Of Tests
Aborted by Lab	XC	0
Invalidated by TMC. Sample Weight out of Range	RC	1
Invalidated by Lab	LC	0
Total		1

D7097: Deposits by MTEOS Summary of Informational Tests

Informational / Shakedown Tests (NN, MN)	Validity Code	No. Of Tests
Shakedown run, Deposits in Range	NN	1
Shakedown run, Deposits not in Range (Severe)	MN	0
Total		1

D7097: Deposits by MTEOS

Period Precision and Severity Estimates

Total Deposits, mg	n	df	Pooled s	Mean ∆/s
Current Targets 9/30/2021 ¹	38	36	4.94	
4/1/20 through 9/30/20	72	70	4.87	-0.22
10/1/20 through 3/31/21	101	99	8.40	0.17
4/1/21 through 9/30/21	81	78	7.25	-0.02
10/1/21 through 3/31/22	75	73	8.86	0.18
4/1/22 through 9/30/22	77	75	7.69	0.69
10/1/22 through 3/31/23	67	65	7.03	0.41
4/1/22 through 9/30/23	74	71	7.42	0.31
10/1/23 through 3/31/24	65	62	6.04	0.19
4/1/24 through 9/30/24	76	73	7.57	0.43
10/1/24 through 3/31/25	72	70	8.74	0.31

¹Target precision updated to reference oils 432 and 434-3 preliminary

D7097 Precision Estimates Total Deposits, mg

Pooled s

*Target precision updated to reference oils 432 and 434-3 preliminary

D7097 Severity Estimates

D7097 Lab Severity Estimates

Total Deposits, mg

Mean Δ/s

D7097: Deposits by MTEOS

- Precision (Pooled s) regressed further to 8.74 s this reporting period
- Performance (Mean Δ /s) has improved, moving from 0.43 s back up to 0.31 s this semester.
- All 72 operationally valid tests this period report using Rod Batch N.
- Most operationally valid calibration tests this period report using Catalyst Batch 23AB (n=69). Only three tests used Catalyst Batch 20AB (n=3).
 - No runs used Catalyst Batch 19BA this semester

D7097: Deposits by MHT TEOST

- No new runs on catalyst batch 19BA this semester
 - Total Runs and Yi statistic for batch 19BA remain at n=349, Yi = -0.02.
- Only 3 new runs on catalyst batch 20AB (total n=322). Performance (Yi) unchanged at 0.41.
- Newest catalyst batch 23AB now has 138 runs. Performance (Yi) continues to improve.
 - YI = 0.44 APR '25; Yi = 0.53 OCT '24; Yi=1.39 APR '24

https://www.astmtmc.org

MHT -4 TEOST INDUSTRY OPERATIONALLY VALID DATA

CUSUM SEVERITY ANALYSIS Mild> -500 -400 1928 남동당 등 8 8 В В **Standard Deviation Units** -300 -200 -100 0 100 200 <Severe 300 400 500 500 1000 1500 2000 2500 3000 3500 0 COUNT IN COMPLETION DATE ORDER

TOTAL DEPOSITS MG

MHT -4 TEOST INDUSTRY OPERATIONALLY VALID DATA Last 500 Points TOTAL DEPOSITS MG

MHT -- 4 TEOST INDUSTRY OPERATIONALLY VALID DATA SEVERITY DATES TOTAL DEPOSITS MG

MHT -- 4 TEOST INDUSTRY OPERATIONALLY VALID DATA CATALYST BATCH TOTAL DEPOSITS MG

280CT23:01:24

MHT -- 4 TEOST INDUSTRY OPERATIONALLY VALID DATA ROD BATCH TOTAL DEPOSITS MG

D7097 Performance by Oil

Total Deposits, mg

Mean

, ,

D7097: Deposits by MHT TEOST

Total Deposits, mg

*Only single RO 434 runs. No StDEV result available for APR'24 and OCT'24.

D7097: Deposits by MHT TEOST

Total Deposits, mg

Mean Δ/s

*Only a single RO 434 run for APR'24 and OCT'24.

TABLE of CONTENTS

Reference Oil Inventory MTEOS

Oil	Year Rec'd By TMC ⁴	Tests	TMC Inventory, gallons	Gallons Shipped last 6 months	Estimated Life
432	1998	MTEOS	100.98	0.31	5+ years
<mark>434–3⁸</mark>	<mark>2017</mark>	<mark>MTEOS</mark>	<mark>11.78</mark>	<mark>2.90</mark>	<mark>1.5 years</mark>

A Integrity of TMC reference oils is confirmed annually by analytical QC testing of chemical and physical properties.
B Multi-test oil; estimated supply of drum reserved for bench testing - other drums available.

October 1, 2024 - March 31, 2025

am of ASTM In

D02.B0.07 TMC Monitored Tests

Engine Oil Elastomer Compatibility (EOEC/LDEOC)

October 1, 2024 - March 31, 2025

A Program of ASTM Internationa

Test Monitoring Center

https://www.astmtmc.org

ASTM Reference Testing Semi-Annual Report D7216 EOEC

ASTM D 7216

Engine Oil Elastomer Compatibility

EOEC (Heavy–Duty)					
OHT PART NUMBER	BATCH CODE*				
OHTEOEC-NBR-A	33				
OHTEOEC-ACM-B	33				
OHTEOEC-FKM-A	32				
OHTEOEC-MAC-A	25				
OHTLDEOC-VMQ1-A	43				
OHTLDEOC-HNBR-A	1				

* As of 20250403

A Program of ASTM International

Calibrated Labs and Stands¹

(change since last Semi-Annual report)

EOEC Test Activity*

Test Status			Nitrile	Polyacrylate	Silicone	Ethylene Acrylate	Total
	LABS BATHS	6 29	7 25	7 25	8 23	7 23	
Acceptable Calibration Test	AC	59	80	54	54	52	299
Failed Calibration Test	OC	2	1	0	1	1	5
Operationally Invalid, by lab	LC	0	1	0	0	0	1
Operationally Invalid, by TMC	RC	0	0	1	0	1	2
Aborted	XC	1	1	2	2	1	7
Acceptable Informational Run	NN	26	0	0	0	0	26
Unacceptable Informational Run	MN	1	0	0	0	0	1
Total		89	83	57	57	55	341

October 1, 2024 - March 31, 2025

A Program of ASTM Internationa

EOEC Failed Calibration Tests*

Cause	Elastomer	No. of Tests
TENSILE STRENGTH & HARDNESS (SEVERE)	NBR	1
HARDNESS (MILD)	MAC	1
ELONGATION (SEVERE)	VMQ	1
VOLUME CHANGE (SEVERE)	FKM	2
Total	5	

* FOUR failing calibration tests from TWO different labs

EOEC Lost Tests*

Validity	Cause	No. of Tests
XC	Aborted Test Due to Power Outage	7
LC	Test Ran on Wrong Elastomer Type	1
RC	Incorrect Bath Heating Time	2
Total		10

*Invalid and aborted calibration tests

EOEC Test Severity

Fluoroelastomer (FKM)

Parameter	Period Mean ∆/s	Status
Volume Change	1.2362	Very Severe
Points Hardness Change	0.2501	Slightly Severe
Tensile Strength Change	0.0901	On Target
Elongation Change	-0.4461	Mild

EOEC Precision (Pooled s) Estimates: Fluoroelastomer

EOEC Precision Estimates by Lab: FKM

Test Parameter	Statistic	LTMS Lab							
		А	В	BB	G	I	L	Р	V
	n=	17	6	0	20	10	4	4	0
Volume	Mean	0.45	0.46		0.88	0.68	0.37	0.39	
	Pooled s	0.11	0.06		1.13	0.19	0.09	0.20	
	Mean /s	0.10	0.10		3.00	1.65	-0.49	-0.32	
Hardness	Mean	9.00	9.00		7.15	9.70	9.75	9.50	
	Pooled s	1.27	1.10		2.25	0.82	0.96	0.58	
	Mean /s	0.44	0.44		-0.40	0.75	0.78	0.66	
Tensile Strength	Mean	-72.8	-72.5		-71.1	-68.1	-69.5	-66.9	
	Pooled s	1.79	1.43		6.78	2.33	2.43	2.41	
	Mean /s	-0.28	-0.22		0.04	0.61	0.34	0.83	
Elongation	Mean	-70.3	-65.4		-56.5	-59.2	-65.4	-60.1	
	Pooled s	2.72	1.14		8.22	2.88	2.19	1.24	
	Mean /s	-1.31	-0.77		0.22	-0.9	-0.77	-0.18	

FLUOROELASTOMER VOLUME CHANGE CORRECTED AVERAGE

FLUOROELASTOMER PTS HARDNESS CHANGE CORRECTED AVG

FLUOROELASTOMER TENS STRENGTH CHANGE CORRECTED AVG

FLUOROELASTOMER ELONGATION CHANGE CORRECTED AVG

EOEC Test Severity

Nitrile (NBR)

Parameter	Period Mean ∆/s	Status
Volume Change	-0.4087	Mild
Points Hardness Change	1.2609	Very Severe
Tensile Strength Change	-0.9317	Mild
Elongation Change	-0.1628	Slightly Mild

EOEC Precision Estimates – Nitrile

EOEC Precision Estimates by Lab: NBR

	Statistic	LTMS Lab							
Test Parameter	Statistic	А	В	BB	G	I	L	Р	V
	n=	19	4	0	21	18	3	7	9
	Mean	1.32	1.58		1.19	1.54	1.98	1.42	1.45
Volume	Pooled s	0.16	0.12		0.46	0.82	0.21	0.14	0.38
	Mean /s	-0.49	-0.18		-0.65	-0.24	0.28	-0.38	-0.34
· · ·	Mean	4.16	4.75		3.81	4.56	1.67	4.86	3.33
Hardness	Pooled s	0.50	0.50		1.21	0.62	0.58	1.07	2.12
	Mean /s	1.32	1.65		1.12	1.54	-0.09	1.71	0.85
	Mean	-3.68	-8.18		-5.46	-0.92	0.00	-0.73	-9.72
Tensile Strength	Pooled s	3.63	3.87		9.68	4.03	5.61	3.88	2.86
-	Mean /s	-0.88	-1.50		-1.13	-0.51	-0.38	-0.48	-1.71
	Mean	-36.3	-39.2		-33.0	-33.8	-26.9	-33.8	-39.0
Elongation	Pooled s	3.01	2.63		14.4	4.39	4.06	2.67	2.29
5	Mean /s	-0.39	-0.82		0.10	-0.02	1.01	-0.02	-0.79

REFERENCE NITRILE VOLUME CHANGE CORRECTED AVERAGE

REFERENCE NITRILE PTS HARD CHANGE CORRECTED AVG

REF NITRILE TENS STRENGTH CHANGE CORRECTED AVG

REF NITRILE ELONGATION CHANGE CORRECTED AVERAGE

EOEC Test Severity

Polyacrylate (ACM)

Parameter	Period Mean ∆/s	Status
Volume Change	2.13	Very Severe
Points Hardness Change	-0.90	Mild
Tensile Strength Change	0.47	Severe
Elongation Change	0.97	Severe

EOEC Precision Estimates – Polyacrylate

EOEC Precision Estimates by Lab: ACM

	Statistic	LTMS Lab							
Test Parameter	Statistic	А	В	BB	G	I	L	Р	V
	n=	15	4	0	18	9	3	4	1
	Mean	2.06	2.11		1.41	2.21	1.40	1.87	1.86
Volume	Pooled s	0.16	0.09		0.94	0.35	0.12	0.43	
	Mean /s	2.45	2.51		1.59	2.64	1.57	2.20	2.18
	Mean	-3.20	-2.25		-0.94	-1.00	-0.33	-0.25	-3.00
Hardness	Pooled s	0.86	1.50		2.34	0.87	1.15	0.50	
	Mean /s	-1.77	-1.24		-0.52	-0.55	-0.18	-0.13	-1.66
	Mean	6.07	5.55		-1.22	9.41	4.37	6.35	7.60
Tensile Strength	Pooled s	3.23	4.10		8.53	3.51	1.88	2.13	
-	Mean /s	0.71	0.65		-0.18	1.13	0.50	0.75	0.90
	Mean	-13.0	-12.0		-13.3	-18.3	-7.53	-18.8	-8.40
Elongation	Pooled s	4.98	4.16		8.31	3.72	7.48	2.78	1.59
J	Mean /s	1.07	1.18		1.05	0.48	1.68	0.42	

REFERENCE POLYACRYLATE VOLUME CHANGE CORRECTED AVG

REF POLYACRYLATE PTS HARD CHANGE CORRECTED AVG

REF POLYACRYLATE TENS STRNGTH CHANGE CORRECTED AVG

REF POLYACRYLATE ELONGATION CHANGE CORRECTED AVG

EOEC Test Severity

Silicone (VMQ)

Parameter	Period Mean ∆/s	Status
Volume Change	0.7431	Severe
Points Hardness Change	-0.6282	Mild
Tensile Strength Change	-0.2708	Slightly Mild
Elongation Change	0.0028	On-Target

October 1, 2024 - March 31, 2025

EOEC Precision Estimates – Silicone

EOEC Precision Estimates by Lab: VMQ

	Statistic	LTMS Lab							
Test Parameter	Statistic	А	В	BB	G	I	L	Р	V
	n=	12	5	1	21	8	4	3	1
	Mean	34.1	34.0	27.8	37.1	31.5	31.1	34.3	31.7
Volume	Pooled s	0.53	0.56		2.12	1.32	1.49	0.74	
	Mean /s	0.67	0.63	-1.48	1.67	-0.23	-0.36	0.73	-0.16
	Mean	-24.5	-23.4	-17.0	-23.6	-21.9	-19.0	-23.3	-21.0
Hardness	Pooled s	0.90	1.14		1.25	0.99	0.82	0.58	
	Mean /s	-1.38	-0.84	2.29	-0.92	-0.10	1.31	-0.81	0.33
	Mean	-33.5	-34.3	-33.2	-36.7	-36.3	-25.0	-37.4	-36.3
Tensile Strength	Pooled s	3.03	2.34		6.83	3.22	1.54	3.41	
-	Mean /s	0.06	-0.14	0.14	-0.80	-0.70	2.36	-0.98	-0.69
	Mean	-25.3	-26.4	-27.5	-24.4	-27.6	-14.8	-25.4	-31.8
Elongation	Pooled s	2.77	2.39		15.5	3.17	2.77	4.99	
5	Mean /s	-0.07	-0.25	-0.43	0.07	-0.44	1.61	-0.10	-1.12

REFERENCE SILICON VOLUME CHANGE CORRECTED AVG

REFERENCE SILICON PTS HARD CHANGE CORRECTED AVG

REF SILICON TENSILE STRENGTH CHANGE CORRECTED AVG

REF SILICON ELONGATION CHANGE CORRECTED AVG

EOEC Test Severity

Ethylene Acrylate "VAMAC" (MAC)

Parameter	Period Mean ∆/s	Status
Volume Change	0.8157	Severe
Points Hardness Change	-0.8344	Mild
Tensile Strength Change	-0.8229	Mild
Elongation Change	-0.2796	Slightly Mild

EOEC Precision Estimates – VAMAC

EOEC Precision Estimates by Lab: MAC

	Statistic	LTMS Lab							
Test Parameter	Statistic	А	В	BB	G	I	L	Р	V
	n=	14	5	0	20	9	1	1	3
	Mean	19.4	19.7		20.0	20.6	18.4	19.7	18.3
Volume	Pooled s	0.90	0.79		1.52	1.01		1.36	0.48
	Mean /s	0.56	0.75		0.95	1.38	-0.13	0.79	-0.15
_	Mean	-9.07	-9.40		-7.75	-7.67	-7.00	-8.67	-8.00
Hardness	Pooled s	0.92	0.89		1.41	1.00		1.53	1.73
	Mean /s	-1.68	-2.02		-0.28	-0.20	0.51	-1.25	-0.55
	Mean	-20.4	-18.0		-19.4	-20.9	-5.40	-13.2	-21.8
Tensile Strength	Pooled s	4.46	2.74		5.56	5.74		5.37	7.21
-	Mean /s	-1.04	-0.56		-0.85	-1.15	2.05	0.44	-1.32
	Mean	-36.9	-37.6		-33.2	-45.6	-29.4	-38.7	-37.4
Elongation	Pooled s	4.99	6.97		11.5	3.04		1.60	7.07
3	Mean /s	-0.27	-0.36		0.24	-1.44	0.75	-0.50	-0.33

REFERENCE VAMAC G VOLUME CHANGE CORRECTED AVERAGE

REF VAMAC G POINTS HARDNESS CHANGE CORRECTED AVG

EOEC — ETHYLENEACRYLATE INDUSTRY OPERATIONALLY VALID DATA

REF VAMAC G TENSILE STRENGTH CHANGE CORRECTED AVG

REF VAMAC G ELONGATION CHANGE CORRECTED AVG

A Program of ASTM Internationa

Test	Date	IL or Memo Number	Торіс
EOEC	20241031	IL24-01	Adjusted Specification Limits for EOEC D7216 Tests added to EOEC IL folder

*Available from TMC Website

October 1, 2024 - March 31, 2025

Reference Oil Inventory Estimated Life

EOEC & LDEOC

Oil	TMC Inventory Gallons	Gallons Shipped Past 6 Months	Estimated Life ^C
SL107 ^{A, B}	1202	280	<mark>2 years</mark>

^A TMC Inventory is used across several test methods

^B SL107 has fully replaced oil 1006; Oil 1006 is no longer used as an EOEC Reference Fluid

^C Use Rate of SL107 will accelerate due to addition of five new Elastomers to D7216: FOUR: ILSAC GF-7 ONE: PC-12

ASTM Reference Testing Semi-Annual Report D7216 LDEOC

October 1, 2024 to March 31, 2025

ASTM D 7216

Engine Oil Elastomer Compatibility

LDEOC (Light–Duty)				
OHT PART NUMBER	BATCH CODE*			
OHTLDEOC-HNBR1-A	33			
OHTLDEOC-FKM1-A	30			
OHTLDEOC-ACM1-B	26			
OHTLDEOC-VMQ1-A	43			
OHTLDEOC-AEM1-B	32			
OHTLDEOC-ACM2-A	2			
OHTLDEOC-AEM2-A	2			
OHTLDEOC-FKM3-A	2			
OHTLDEOC-AEM3-A	2			

* As of 20250403

A Program of ASTM International
LDEOC Test Activity

Test Status		Ethylene Acrylate	Fluoroelast.	Nitrile	Polyacrylate	Silicone	Total
	LABS BATHS	7 26	6 23	7 18	7 28	7 27	
Acceptable Calibration Test	AC	58	52	63	63	65	301
Failed Calibration Test	OC	2	3	0	3	1	9
Operationally Invalid, by lab	LC	0	0	0	0	0	0
Operationally Invalid, by TMC	RC	0	0	0	0	0	0
Aborted	XC	1	2	2	1	2	8
Acceptable Informational Run	NN	0	0	0	14	0	14
Unacceptable Informational Run	MN	0	0	0	0	0	0
Total		61	57	65	81	68	332

October 1, 2024 - March 31, 2025

Test Monitoring Center

LDEOC Test Activity

Test Status		Ethylene Acrylate 2	Ethylene Acrylate 3	Fluoroelast.3	Polyacrylate2	Total
	LABS BATHS	6 27	6 28	6 30	6 31	
Acceptable Calibration Test	AC	62	64	54	64	244
Failed Calibration Test	OC	1	1	1	2	5
Operationally Invalid, by lab	LC	0	0	1	1	2
Operationally Invalid, by TMC	RC	0	0	1	0	1
Aborted	XC	2	1	1	2	6
Acceptable Informational Run	NN	0	0	0	0	0
Unacceptable Informational Run	MN	0	0	0	0	0
Total		65	66	58	69	258

October 1, 2024 - March 31, 2025

Test Monitoring Center

Calibrated Labs and Stands¹

(change shown in parentheses)

Test	Labs	Stands					
D7216 LDEOC	7 ² (+0)	N/A					
¹ As of 3/31/2025 ² Not all Elastomer Types were run at each lab							

LDEOC Failing Calibration (OC) Tests

Cause	Elastomer	#
TENSILE STRENGTH (MILD)	1-ACM1, 1-ACM2	2
VOLUME (MILD)	2-AEM1	2
VOLUME (SEVERE)	1-FKM1	1
HARDNESS (MILD)	3-ACM1	3
TENSILE STRENGTH (SEVERE)	1-VMQ1	1
HARDNESS (SEVERE)	1-FKM3	1
VOLUME (MILD), HARDNESS (SEVERE)	1-AEM2	1
VOLUME (SEVERE), HARDNESS (MILD)	1-AEM3	1
VOL (SEVERE), HARD/TENS (MILD)	1-FKM1	1
VOL, HARD (MILD), TENS (SEVERE)	1-FKM1	1
Total		14

There were FOURTEEN failing LDEOC Calibration Tests reported this period from FIVE different labs.

LDEOC Lost Tests

Validity	Cause	No. of Tests
LC	WRONG ELASTOMER USED (FKM1)	1
RC	SAMPLES REMOVED FROM BATH TOO SOON	1
LC	SAMPLES DISPOSED BEFORE DATA TAKEN	1
XC	POWER OUTAGE	14
Total		17

*Invalid (LC,RC) and Aborted (XC) calibration tests

LDEOC Test Severity

Ethylene Acrylate (AEM1)

Parameter	Period Mean ∆/s	Status
Volume Change	-0.9112	Mild
Points Hardness Change	0.8388	Severe
Tensile Strength Change	-0.3342	Slightly Mild

LDEOC Precision Estimates – Ethylene Acrylate

LDEOC Precision Estimates by Lab: AEM1

	Statistic	LTMS Lab								
Test Parameter	Statistic	А	В	E	G	I	L	Р	V	
	n=	19	8	0	18	10	1	1	3	
	Mean	23.2	23.4		24.0	23.9	23.8	22.3	21.7	
Volume	Pooled s	0.42	0.30		0.95	0.53			0.25	
	Mean /s	-1.33	-0.99		-0.31	-0.33	-0.48	-2.45	-3.25	
	Mean	-12.4	-12.4		-11.3	-11.6	-13.0	-13.0	-12.7	
Hardness	Pooled s	0.83	1.51		0.77	0.70			0.58	
	Mean /s	0.40	0.39		1.53	1.24	-0.30	-0.30	0.07	
	Mean	-17.3	-23.1		-21.0	-12.3	-10.2	-13.2	-16.4	
Tensile Strength	Pooled s	4.04	2.35		6.00	2.53			3.65	
	Mean /s	-0.12	-1.61		-1.09	1.18	1.72	0.94	0.11	

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA ETHYLENE ACRYLATE VOLUME CHANGE FINAL

A Program of ASTM Internation

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA ETHYLENE ACRYLATE HARDNESS CHANGE FINAL

A Program of ASTM Internation

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA ETHYLENE ACRYLATE TENSILE STRENGTH CHANGE FINAL

LDEOC Test Severity

Ethylene Acrylate (AEM2)

Parameter	Period Mean ∆/s	Status
Volume Change	0.0409	On-Targe
Points Hardness Change	-0.4634	Mild
Tensile Strength Change	-0.8049	Mild

LDEOC Precision Estimates – Ethylene Acrylate 2

LDEOC Precision Estimates by Lab: AEM2

	Statistic	LTMS Lab								
Test Parameter	Statistic	А	В	E	G	I	L	Р	V	
	n=	34	8	0	14	1	0	1	5	
	Mean	20.6	21.4		21.8	22.1		21.7	20.6	
Volume	Pooled s	2.16	0.21		1.41				0.51	
	Mean /s	-0.31	0.33		0.75	0.97		0.62	-0.32	
	Mean	-8.68	-7.50		-8.14	-9.00		-7.00	-8.60	
Hardness	Pooled s	1.66	1.07		1.29				2.70	
	Mean /s	-0.68	0.19		-0.29	-0.93		0.57	-0.63	
	Mean	-43.5	-47.7		-48.1	-45.7		-43.3	-44.6	
Tensile Strength	Pooled s	3.57	2.74		5.85				6.84	
	Mean /s	-0.37	-1.45		-1.56	-0.94		-0.33	-0.66	

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA ETHYLENE ACRYLATE-2 VOLUME CHANGE FINAL

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA ETHYLENE ACRYLATE-2 HARDNESS CHANGE FINAL

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA ETHYLENE ACRYLATE-2 TENSILE STRENGTH CHANGE FINAL

LDEOC Test Severity

Ethylene Acrylate (AEM3)

Parameter	Period Mean ∆/s	Status
Volume Change	0.4962	Severe
Points Hardness Change	0.3114	Severe
Tensile Strength Change	-1.1774	Very Mild

LDEOC Precision Estimates – Ethylene Acrylate 3

LDEOC Precision Estimates by Lab: AEM3

	Statistic	LTMS Lab								
Test Parameter	Statistic	А	В	E	G	I	L	Р	V	
	n=	34	8	0	15	1	0	1	6	
	Mean	8.92	8.70		9.08	10.16		8.69	8.13	
Volume	Pooled s	2.12	0.31		1.15				0.72	
	Mean /s	0.53	0.35		0.68	1.58		0.34	-0.13	
	Mean	-0.09	1.62		0.73	1.00		2.00	-0.33	
Hardness	Pooled s	1.75	1.19		2.05				3.01	
	Mean /s	0.14	0.83		0.47	0.58		0.98	0.04	
	Mean	-44.0	-46.3		-46.7	-42.1		-45.8	-47.6	
Tensile Strength	Pooled s	-5.06	1.80		4.92				7.28	
	Mean /s	-0.97	-1.35		-1.43	-0.65		-1.27	-1.57	

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA ETHYLENE ACRYLATE-3 VOLUME CHANGE FINAL

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA ETHYLENE ACRYLATE-3 HARDNESS CHANGE FINAL

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA ETHYLENE ACRYLATE-3 TENSILE STRENGTH CHANGE FINAL

LDEOC Test Severity

Fluoroelastomer (FKM1)

Parameter	Period Mean ∆/s	Status
Volume Change	-1.7891	Very Mild
Points Hardness Change	-0.2610	Slightly Mild
Tensile Strength Change	0.1797	Slightly Severe

LDEOC Precision Estimates – Fluoroelastomer

LDEOC Precision Estimates by Lab: FKM1

Test Parameter	Statistic	LTMS Lab*							
		А	В	E	G	I	L	Р	V
	n=	18	9	0	15	10	1	0	2
Volume	Mean	0.58	0.52		-0.06	0.73	0.40		0.36
	Pooled s	0.15	0.10		2.25	0.31			0.06
	Mean /s	-0.64	-1.07		-4.96	0.33	-1.87		-2.17
Hardness	Mean	4.06	3.78		3.4	3.80	5.00		5.00
	Pooled s	1.16	0.83		1.45	0.63			1.41
	Mean /s	-0.04	-0.32		-0.69	-0.30	0.89		0.89
Tensile Strength	Mean	-58.4	-57.7		-57.5	-49.4	-59.7		-64.2
	Pooled s	2.50	1.33		9.00	1.96			1.70
	Mean /s	-0.22	-0.07		-0.02	1.85	-0.53		-1.57

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA FLUOROELASTOMER VOLUME CHANGE FINAL

A Program of ASTM Internationa

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA FLUOROELASTOMER HARDNESS CHANGE FINAL

A Program of ASTM International

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA FLUOROELASTOMER TENSILE STRENGTH CHANGE FINAL

LDEOC Test Severity

Fluoroelastomer (FKM3)

Parameter	Period Mean ∆/s	Status			
Volume Change	0.1640	Slightly Severe			
Points Hardness Change	0.2273	Slightly Severe			
Tensile Strength Change	-0.6201	Mild			

LDEOC Precision Estimates – Fluoroelastomer3

A Program of ASTM Ind

LDEOC Precision Estimates by Lab: FKM3

Test Parameter	Statistic	LTMS Lab*							
		А	В	E	G	I	L	Р	V
	n=	26	8	0	14	1	0	1	5
Volume	Mean	0.84	0.74		0.86	1.48		0.37	0.76
	Pooled s	0.10	0.09		0.29				0.09
	Mean /s	0.20	-0.02		0.23	1.59		-0.83	0.02
Hardness	Mean	4.15	4.00		3.71	4.00		5.00	6.00
	Pooled s	0.92	0.76		1.49				4.06
	Mean /s	0.17	0.00		-0.32	0		1.13	2.27
Tensile Strength	Mean	-58.0	-57.6		-55.9	-51.4		-51.5	-62.5
	Pooled s	2.12	1.23		4.78				2.10
	Mean /s	-0.66	-0.62		-0.47	-0.09		10	-1.04

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA FLUOROELASTOMER-3 VOLUME CHANGE FINAL

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA FLUOROELASTOMER-3 HARDNESS CHANGE FINAL

A Program of ASTM International

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA FLUOROELASTOMER-3 TENSILE STRENGTH CHANGE FINAL

LDEOC Test Severity

Nitrile (NBR1)

Parameter	Period Mean ∆/s	Status
Volume Change	1.1119	Severe
Points Hardness Change	-0.6871	Mild
Tensile Strength Change	-0.9573	Mild

October 1, 2024 - March 31, 2025

A Program of ASTM Interna
LDEOC Precision Estimates – Nitrile

LDEOC Precision Estimates by Lab: NBR1

	Statistic	LTMS Lab							
Test Parameter	Statistic	А	В	E	G	I	L	Р	V
	n=	20	9	0	17	11	1	1	4
Volume	Mean	1.08	1.19		0.77	1.05	1.31	0.60	0.86
	Pooled s	0.22	0.20		0.60	0.61			0.06
	Mean /s	1.26	1.45		0.75	1.22	1.65	0.47	0.89
	Mean	-1.80	-1.22		-1.88	-2.00	0	-2.00	-2.25
Hardness	Pooled s	0.70	0.83		0.33	0.45			0.96
	Mean /s	-0.71	-0.05		-0.81	-0.94	1.35	-0.94	-1.23
Tensile Strength	Mean	2.60	2.41		-1.00	2.45	-6.10	1.00	0.95
	Pooled s	3.34	4.65		5.72	3.36			0.06
	Mean /s	-0.69	-0.73		-1.43	-0.72	-2.48	-1.02	-1.03

LDEOC - NITRILE INDUSTRY OPERATIONALLY VALID DATA

REFERENCE NITRILE VOLUME CHANGE FINAL

LDEOC - NITRILE INDUSTRY OPERATIONALLY VALID DATA

REF NITRILE POINTS HARDNESS CHANGE AVERAGE

LDEOC - NITRILE INDUSTRY OPERATIONALLY VALID DATA

REF NITRILE TENSILE STRENGTH CHANGE FINAL

LDEOC Test Severity

Polyacrylate (ACM1)

Parameter	Period Mean ∆/s	Status
Volume Change	-0.3955	Mild
Points Hardness Change	-1.3788	Very Mild
Tensile Strength Change	-0.4376	Mild

LDEOC Precision Estimates – Polyacrylate

LDEOC Precision Estimates by Lab: ACM1

	Statistic	LTMS Lab							
Test Parameter	Statistic	А	В	E	G	I	L	Р	V
	n=	19	10	2	20	9	1	0	5
Volume	Mean	1.63	1.87	1.52	1.85	2.17	2.32		1.32
	Pooled s	0.33	0.32	0.04	0.80	0.39			0.17
	Mean /s	-0.64	-0.27	-0.80	-0.31	0.18	0.41		-1.11
	Mean	-3.05	-1.90	-4.00	-1.85	-0.67	-1.00		-5.00
Hardness	Pooled s	0.78	0.57	0.00	1.39	1.00			1.58
	Mean /s	-1.85	-1.10	-2.46	-1.06	-0.30	-0.51		-3.11
Tensile Strength	Mean	-1.43	-0.40	-1.25	-1.54	-0.16	-2.1		-1.14
	Pooled s	6.88	4.37	1.06	8.67	4.18			7.72
	Mean /s	-0.47	-0.35	-0.45	-0.49	-0.32	-0.55		-0.44

Drogram of ASTM Int

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA POLYACRYLATE VOLUME CHANGE FINAL

A Program of ASTM International

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA POLYACRYLATE HARDNESS CHANGE FINAL

A Program of ASTM International

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA POLYACRYLATE TENSILE STRENGTH CHANGE FINAL

A Program of ASTM Internationa

LDEOC Test Severity

Polyacrylate (ACM2)

Parameter	Period Mean ∆/s	Status
Volume Change	0.9701	Severe
Points Hardness Change	-1.2494	Very Mild
Tensile Strength Change	-0.9593	Mild

LDEOC Precision Estimates – Polyacrylate2

LDEOC Precision Estimates by Lab: ACM2

	Statistic	LTMS Lab							
Test Parameter	Statistic	А	В	Е	G	I	L	Р	V
	n=	34	9	0	16	1	0	1	5
Volume	Mean	11.6	11.7		11.7	12.9		12.44	11.2
	Pooled s	0.52	0.18		0.64				0.48
	Mean /s	0.95	1.00		1.02	2.80		2.10	0.29
	Mean	-4.50	-3.22		-3.69	-1.00		-4.00	-5.60
Hardness	Pooled s	1.31	0.83		1.66				1.34
	Mean /s	-1.46	-0.69		-0.97	0.66		-1.16	-2.13
Tensile Strength	Mean	-16.8	-22.3		-16.6	-16.8		-17.1	-19.2
	Pooled s	3.53	3.58		6.20				4.63
	Mean /s	-0.73	-2.18		-0.66	-0.72		-0.80	-1.36

arom of ASTM int

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA POLYACRULATE-2 VOLUME CHANGE FINAL

A Program of ASTM International

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA POLYACRYLATE-2 HARDNESS CHANGE FINAL

LDEOC – ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA POLYACRYLATE-2 TENSILE STRENGTH CHANGE FINAL

A Program of ASTM International

LDEOC Test Severity

Silicone (VMQ1)

Parameter	Period Mean ∆/s	Status
Volume Change	0.6193	Severe
Points Hardness Change	-0.5728	Mild
Tensile Strength Change	-0.4218	Mild

LDEOC Precision Estimates – Silicone

LDEOC Precision Estimates by Lab: VQM1

	Statistic								
Test Parameter	Statistic	А	В	E	G	I	L	Р	V
	n=	20	10	0	16	10	4	1	5
Volume	Mean	34.1	34.0		36.5	30.8	31.6	33.5	34.1
	Pooled s	0.58	0.60		2.01	1.34	0.86		0.96
	Mean /s	0.65	0.61		1.46	-0.45	-0.20	0.44	0.65
	Mean	-24.0	-22.9		-23.3	-21.9	-18.5	-23.0	-21.8
Hardness	Pooled s	1.00	0.88		1.14	0.57	1.00		1.30
	Mean /s	-1.16	-0.60		-0.80	-0.11	1.56	-0.65	-0.06
Tensile Strength	Mean	-34.1	-37.1		-38.5	-36.0	-26.8	-34.1	-32.1
	Pooled s	4.20	2.28		5.35	4.60	1.51		2.94
	Mean /s	-0.09	-0.92		-1.28	-0.60	1.87	-0.09	0.46

October 1, 2024 - March 31, 2025

LDEOC - SILICONE INDUSTRY OPERATIONALLY VALID DATA

REFERENCE SILICON VOLUME CHANGE FINAL

LDEOC - SILICONE INDUSTRY OPERATIONALLY VALID DATA

REFERENCE SILICON POINTS HARDNESS FINAL

LDEOC - SILICONE INDUSTRY OPERATIONALLY VALID DATA

REF SILICON TENSILE STRENGTH CHANGE FINAL

Information Letters & Technical Updates*

Test	Date	IL or Memo Number	Торіс
LDEOC	20250425	25-1	AMCM1 Batch 27 Volume Change Correction Factor

*Available from TMC Website

October 1, 2024 - March 31, 2025

Reference Oil Inventory Estimated Life

EOEC & LDEOC

Oil	TMC Inventory Gallons	Gallons Shipped Past 6 Months	Estimated Life ^C
SL107 ^{A, B}	1202	280	<mark>2 years</mark>

^A TMC Inventory is used across several test methods

^B SL107 has fully replaced oil 1006; Oil 1006 is no longer used as an EOEC Reference Fluid

^C Use Rate of SL107 will accelerate due to addition of five new Elastomers to D7216: FOUR: ILSAC GF-7 ONE: PC-12

D02.B0.07 TMC Monitored Tests

ASTM D 7528 ROBO

October 1, 2024 - March 31, 2025

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change since last Semi-Annual report)

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	89
Failed Calibration Test	OC	8
Operationally Invalidated or Aborted by Lab	LC, XC	9
Operationally Invalidated After Initially Reported as Valid	RC	1
Total		107

Number of Labs Reporting Data: 6 Fail Rate of Operationally Valid Tests: 8.2% (12.0% last period)

October 1, 2024 - March 31, 2025

Statistically Unacceptable Tests (OC)	No. Of Tests
Natural Log (MRV Viscosity) Severe	3
Natural Log (MRV Viscosity) Mild	5
Total	8

October 1, 2024 - March 31, 2025

D7528: ROBO Failed Tests by Lab

Failed Parameter		LTMS	Number of		
		AM	AQ	G	Tests
Natural Log (MRV Viscosity) Severe	1	1	1	0	3
Natural Log (MRV Viscosity) Mild	2	0	0	3	5
Total	3	1	1	3	8

• EIGHT different units from FOUR different labs reported failing calibration tests

Operationally Invalid (LC, RC) or Aborted (XC) Calibration Tests

Test Status	Cause	No. of Tests
Invalidated by Lab (LC)	Wrong Test Temperature	2
Invalidated by Lab (LC)	High Volatiles	1
Invalidated by TMC (RC)	Yield Stress NOT $<$ 35 Pa (and not RO 434–3)	1
Aborted Test (XC)	Test Temperature off Spec	2
Aborted Test (XC)	Excess NO2 delivered	3
Aborted Test (XC)	Reference Oil contaminated	1
Totals		10

Period Precision and Severity Estimates

Natural Log (MRV Viscosity)	n	df	Pooled s	Mean Δ/s
Targets Updated 202110211	80	77	0.1551	
4/1/20 through 9/30/20	119	113	0.2264	-0.76
10/1/20 through 3/31/21	113	108	0.3188	-0.11
4/1/21 through 9/30/21	116	110	0.1992	-0.37
10/1/21 through 3/31/22	106	102	0.2103	-0.36
4/1/22 through 9/30/22	105	101	0.1868	-0.06
10/1/22 through 3/31/23	94	91	0.2000	0.11
4/1/23 through 9/30/23	103	100	0.1990	-0.11
10/1/23 through 3/31/24	91	88	0.1741	-0.12
4/1/24 through 9/30/24	92	88	0.1893	-0.72
10/1/24 through 3/31/25	97	94	0.1957	-0.37

¹Updated targets to include latest primary reference oils 434-3, 435-1 and 436

October 1, 2024 - March 31, 2025

NO ₂ Delivery Mechanism	Number of Total Tests	Number Of AC Tests	Pass Rate (%)	Number of Labs	Number of Rigs	LAB ID's
Dilute	41	37	90.2	2	14	G, AM
Liquid	56	52	92.9	5	16	A, AQ, B, BC, G
BOTH (Totals)	97	89	91.8	6*	30	A, AM, AQ, B, BC, G

*One lab is conducting tests with both NO₂ delivery methods.

Precision, Performance (Mean Δ/s) by Lab and NO₂ Delivery Mechanism

NO ₂ Delivery		Ref Oil 434-2	Ref Oil 434-3	Ref Oil 435-1	Ref Oil 436	TOTAL
Dilute	No. of Runs	0	9	22	10	41
	Mean		10.6112	10.9841	10.3357	10.7441
	Pooled s		0.1491	0.1807	0.1735	0.1728
	Mean Δ/s		-1.48	-0.28	0.03	-0.47
Liquid	No. of Runs	0	10	29	17	56
	Mean		10.7202	10.9664	10.3434	10.7333
	Pooled s		0.1775	0.2463	0.1629	0.2131
	Mean Δ/s		-0.70	-0.37	0.09	-0.29
BOTH	No. of Runs	0	19	51	27	97
	Mean		10.6685	10.9740	10.3406	10.7378
	Pooled s		0.1696	0.2186	0.1636	0.1957
	Mean Δ/s		-1.07	-0.33	0.07	-0.37

October 1, 2024 - March 31, 2025

Period Performance (Mean Δ/s) by Lab and NO₂ Delivery Mechanism

NO ₂ Delivery Mechanism	LAB A (all L)	LAB AM (all D)	LAB AQ (all L)	LAB B (all L)	LAB BC (all L)	LAB G (mix)
Dilute	n = 0	n = 7	n = 0	n = 0	n = 0	n = 34
	N/A	0.54	N/A	N/A	N/A	-0.68
Liquid	n = 37	n = 0	n = 2	n = 9	n = 2	n = 6
	-0.57	N/A	2.13	1.02	-1.23	-1.02
BOTH	n = 37	n = 7	n =2	n = 9	n = 2	n = 40
	-0.57	0.54	2.13	1.02	-1.23	-0.73

October 1, 2024 - March 31, 2025

Program of ASTM International

October 1, 2024 - March 31, 2025

Mean Δ /s

- Precision (Pooled s) remained at 0.19 for the second consecutive semester.
- > Severity (Mean Δ/s) has moved up to -0.37 reversing from the very mild trend from last semester.
- CUSUM plot for NO2 delivery method (D = dilute) shows a leveling off from the mild test results.
- CUSUM plot for NO2 delivery method (L = liquid) showed an overall mild trend for the Oct24-Mar25 semester, but early results in the current semester have shown an abrupt change to a severe trend.

ROBO TEST INDUSTRY OPERATIONALLY VALID DATA

AGED OIL MRV APPARENT VISCOSITY

ROBO TEST INDUSTRY OPERATIONALLY VALID DATA

Last 200 Data Points AGED OIL MRV APPARENT VISCOSITY

ROBO TEST INDUSTRY OPERATIONALLY VALID DATA

AGED OIL MRV APPARENT VISCOSITY

ROBO TEST INDUSTRY OPERATIONALLY VALID DATA Last 750 Data Points AGED OIL MRV APPARENT VISCOSITY

ROBO TEST INDUSTRY OPERATIONALLY VALID DATA NO2 Option L ONLY AGED OIL MRV APPARENT VISCOSITY

ROBO TEST INDUSTRY OPERATIONALLY VALID DATA NO2 Option D ONLY AGED OIL MRV APPARENT VISCOSITY

Means by Reference Oil, NO2 Delivery

D (left) and L (right)

Performance by Ref Oil, NO2 Delivery

D (left) and L (right)

https://www.astmtmc.org

October 1, 2024 - March 31, 2025

A Program of ASTM Internationa

Distribution of MRVt

Natural Log (MRV Viscosity)

S_R

Test Monitoring Center

Distribution of MRVyi

F 5.40 Prob > F 0.0060

Robo

Oil	Year Rec'd By TMC ⁴	Tests	TMC Inventory, gallons	Gallons Shipped last 6 months	Estimated Life	
<mark>434–3⁸</mark>	<mark>2017</mark>	ROBO	<mark>11.78</mark>	<mark>2.90</mark>	<mark>2 years</mark>	
<mark>435–1</mark>	<mark>2008</mark>	ROBO	<mark>33.23</mark>	<mark>7.40</mark>	<mark>2 years</mark>	
436 ^{<i>B</i>}	2014	ROBO	29.21	3.06	5+ years	

^A Integrity of TMC reference oils is confirmed annually by analytical QC testing of chemical and physical properties. ^B Multi-test oil; estimated aliquot reserved for bench testing.

Reference Oil Inventory

>>> As of 3/31/2025

A Program of ASTM International

Reference Oil Inventory: May 2025

Original Bland	Section	Oil	Tosts	Voor	<u>Blend</u>	<u>TMC</u>	<u>Estimated</u>
<u>Original Biend</u>	<u>Section</u>	<u>011</u>	Tests	rear	Quantity	<u>Inventory</u>	<u>Life</u>
44	BENCH	44-5	D6594	2022	54	45.3	> 5
52	BENCH	52	D6417	1995	100	59.38	> 5
55	BENCH	55	D6417	1995	100	65.89	> 5
58	BENCH	58	D6417, D6417QC, GI	1998	159	111.5	> 5
66	BENCH	66	D6082	2002	108	66.3	> 5
75	BENCH	75-2	TEOST	2024	8	6.86	>5
77	BENCH	77-3	EOWT	2015	900	350	> 5
<mark>79</mark>	BENCH	<mark>79</mark>	<mark>EOFT, EOWT</mark>	2014	1026	<mark>78.3</mark>	<mark>1.0</mark>
<mark>82</mark>	BENCH	<mark>82-1</mark>	BRT	2008	10	<mark>0.5</mark>	<mark><1</mark>
86	BENCH	86	BRT	2017	54	49	>5
87	BENCH	87	BRT	2017	98	92.9	>5
<mark>90</mark>	BENCH	<mark>90</mark>	D874QC	2005	49.5	<mark>2.23</mark>	<mark>1.5</mark>
91	BENCH	91	D874	2006	5	2.90	> 5
92	BENCH	92	D874	2020	52	52.44	> 5
432	BENCH	432	MTEOS	1998	207	100.98	> 5
<mark>434</mark>	BENCH	<mark>434–3</mark>	<mark>MTEOS, ROBO</mark>	2017	55	<mark>11.78</mark>	<mark>1.5</mark>
<mark>435</mark>	BENCH	<mark>435–1</mark>	ROBO	2008	55	<mark>33.23</mark>	<mark>2.0</mark>
435	BENCH	435-2	TEOST	2010	550	31.73	> 5
436	BENCH	436	ROBO	2014	55	29.21	> 5
820	BENCH	820-2	D874	2001	55	5.91	> 5
1005	BENCH	1005-5	D6594	2015	55	23.4	> 5
1006	BENCH	1006	BRT	1996	55	26.35	> 5
1009	BENCH	1009	GI	2002	55	33.30	> 5
FOAMB18	BENCH	FOAM18B	D6082	2018	102	67.18	> 5
GIA17	BENCH	GIA17	GI	2017	10	5.15	> 5
GIC18	BENCH	GIC18	GI	2018	10	7.82	<mark>> 5</mark>
<mark>SL107</mark>	BENCH	<mark>SL107</mark>	<mark>EOEC, LDEOC</mark>	2019	3868	<mark>1202</mark>	<mark>2.0</mark>
VOLC12	BENCH	VOLC12	D5800	2013	55	16.6	4
VOLD12	BENCH	VOLD12	D5800	2013	55	14.8	4
VOLD18	BENCH	VOLD18	D5800QC	2018	1092	516	> 5
VOLE12	BENCH	VOLE12	D5800	2012	55	12.6	4

TABLE of CONTENTS

Additional Information

A Program of ASTM International

Additional Information

- Available on the TMC's Website:
 - Lubricant Test Monitoring System (LTMS) Document
 - CUSUM Severity Plots
 - Reference Data, Period Statistics and Timelines
 - Information Letters and Technical Memos
 - Report Forms & Data Dictionaries
 - Online Store, and more...

www.astmtmc.org

A Program of ASTM International