

Test Monitoring Center

https://www.astmtmc.org

ASTM D02.B0.07 Semi-Annual Report Bench Test Monitoring

D874, D5133 (GI), D5800, D6082, D6335 (TEOST), D6417, D6557 (BRT), D6594 (HTCBT), D6794 (EOWT), D6795 (EOFT), D7097(MTEOS), and D7528 (ROBO)

October 2022 - March 31, 2023

Table of Contents

Section	Торіс				
Summary Items	<u>Executive</u>	Reference Oil Inventories	Additional Information		
Test Area Status	TEST	LABS*	STANDS*		
Sulfated Ash	<u>D874</u>	5 (+1)	N/A		
Gelation Index (GI)	<u>D5133</u>	9 (+1)	55 (+6)		
NOACK Volatility	<u>D5800</u>	11 (+1)	25 (+0)		
High Temp Foam	<u>D6082</u>	7 (+1)	8 (+1)		
TEOST	<u>D6335</u>	8 (0)	13 (+0)		
GC Volatility	<u>D6417</u>	7 (0)	9 (0)		
* As of 3/31/2023					

Table of Contents

Section	Торіс			
Test Area Status (cont.)	TEST	LABS*	STANDS*	
Ball Rust Test (BRT)	<u>D6557</u>	5 (-1)	5 (-2)	
HTCBT	<u>D6594</u>	10 (+0)	30 (-2)	
EOWT	<u>D6794</u>	6 (+1)	N/A	
EOFT	<u>D6795</u>	6 (+0)	N/A	
MTEOS	<u>D7097</u>	10 (+2)	26 (-4)	
EOEC Elast. Compat.	<u>D7216-E</u>	6 (-2)	N/A	
LDEOC Elast. Compat.	<u>D7216-L</u>	8 (+0)	N/A	
ROBO	<u>D7528</u>	5 (-2)	29 (+20)	
* As of 3/31/2023				

- D874 (Sulfated Ash)
- For the third consecutive 6-month period, there were no tests which failed to meet acceptance criteria for D874. Reference test results still trending mild.
- D5133 (Gelation Index)
- Six new Units became calibrated with the addition of a new GI testing lab this period. Also new was GIC18, a Reference Oil with a performance target close to the Pass/Fail limit of 12.
- D5800 (NOACK)
- CUSUM slope continued turning towards MILD after leveling off in the previous semester. Long-term severity trend (severe) in the CUSUM plots was a topic of discussion at the Surveillance Panel meeting in October. At this meeting, the panel concluded that a target change was not appropriate (at that time) but warranted a deeper investigation of test results by Procedure and/or by Model. Since the October Surveillance Panel meeting, it does appear that the severe trend abating is due to more D procedure rigs which are running on the MILD side of target while the B procedure rigs have moved back towards on-target (away from running on the SEVERE side of target).

- D6082 (High Temperature Foam)
- For the Third consecutive 6-month period, there were no tests which failed to meet acceptance criteria for HT Foam calibration testing.

• D6335 (TEOST)

- For the second consecutive semester, test fail rates have climbed by approximately 7% (20% fail rate for APR '23). Precision is running severe.
- Fail rate for TEOST doubled with respect to previous six-month period.
- D6417 (GC Volatility)
- No failing Calibration Runs in this period for the seven labs that have nine instruments.

• D6557 (BRT)

 Average Gray Value (AGV) continues to trend slightly severe this semester after a MILD Peak last period. But overall, CUSUM has been relatively "flat" for the past six years (since April 2017)

▶ D6594 (HTCBT)

Copper and Lead concentrations are both trending severe. Some labs had test results with extremely large variance from expected means. These results have raised concerns and generated requests to understand if this is a lab or industry issue. Previous Surveillance Panel Chairperson (M. Lopez) is no longer available. The SP will need to identify a replacement for Mr. Lopez.

• D6794 (EOWT)

Change in flowrate continues to trend severe for all water treat rates, however the severe trends are abating, especially for the 0.6% testing which showed a significant flattening of its CUSUM plot in the second half of this reporting period.

• D6795 (EOFT)

 Change in Flow Average (CIFA) is trending severe with a very consistent CUSUM slope over the past two years.

D7097 (MTEOS)

> Precision (Pooled s) remains high, but did move closer to target in this reporting period and Performance (Mean Δ/s) has improved, moving from 0.69 s down to 0.41 s

D7216 (EOEC/LDOEC)

Supply of 1006 Ref Oil has been completely exhausted. All tests now use Ref Oil SL-107. Surveillance Panel has agreed to resume Adjustment Factors for EOEC. Several labs participated in Round Robin tests of ACM1 batch 25 vs batch 26 to understand what would be the result of returning to a previous manufacturing method for the Polyacrylate elastomer. TMC will officially monitor the EOEC/LDEOC bench tests, adding a section to LTMS.

• D7528 (ROBO)

Long term (very linear) mild severity trend in CUSUM plotting now appears to be leveling off and the Surveillance Panel is seeking to understand if this trend may be a result of a recent change to the test procedure which allows the use of pre-diluted NO₂. The ROBO Surveillance Pane; thanks Justin Mills for many years of service as Chairperson and welcome's new Chairperson Maddie Dellinger.

D02.B0.07 TMC Monitored Tests

Sulfated Ash

October 1, 2022 - March 31, 2023

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change shown in parentheses)

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	11
Total		11

Number of Labs Reporting Data: 5 Fail Rate of Operationally Valid Tests: 0%

Statistically Unacceptable	No. Of
Tests (OC)	Tests
No Failed tests	0

 No operationally invalid or statistically unacceptable tests this report period.

Period Precision and Severity Estimates

Total Deposits, mg	n	df	Pooled s	Mean Δ/s
Current Targets	81	78	0.07	
10/1/18 through 3/31/19	8	5	0.04	-0.33
4/1/19 through 9/30/19	8	5	0.04	-0.18
10/1/19 through 3/31/20	7	4	0.04	-0.71
4/1/20 through 9/30/20	8	5	0.03	-0.30
10/1/20 through 3/31/21	8	5	0.02	-0.35
4/1/21 through 9/30/21	10	7	0.15	0.37
10/1/21 through 3/31/22	9	6	0.05	-0.07
4/1/22 through 9/30/22	8	6	0.06	-0.38
10/1/22 through 3/31/23	11	8	0.04	-0.71

Sulfated Ash, mass% Pooled s

Sulfated Ash, mass%

Mean Δ/s

- Precision (Pooled s) is almost identical with respect to the previous period and is in line with most historical estimates
- > Performance (Mean Δ /s) has further regressed to -0.71 s

D874 INDUSTRY OPERATIONALLY VALID DATA

TEST SAMPLE PERCENT SULFATED ASH

19APR23:18:57

Distribution of SASHti

226.96 Prob > F <.0001

Sulfated Ash, mass%

D02.B0.07 TMC Monitored Tests

Gelation Index (GI)

October 1, 2022 - March 31, 2023

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change shown in parentheses)

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	70
Failed Calibration Test	OC	14
Operationally Invalidated by Lab	LC / LS / XC / XS	4
Operationally Invalidated After Initially Reported as Valid	RC/RS	0
Acceptable Discrimination Tests	AS	45
Failed Discrimination Tests	OS	8
Informational Runs	NN / MN	3
Total		144

Number of Labs Reporting Data: 9 Fail Rate of Operationally Valid Calibration Tests: 17% (previous 6.9%) Fail Rate of Operationally Valid Discrimination Tests: 15% (previous 0%)

Statistically Unacceptable Calibration Tests (OC)	No. Of Tests
Gelation Index Mild	7
Gelation Index Severe	7
Total	14

- Of the 14 OC tests
 - 7-GIC18 (New Reference Oil added to the Rotation)
 - 5-GIA17
 - 2–1009
- Three greater than -6.5 s from targets (-10.735 s largest)
- Four between -2 and -6.5 s from targets
- Four between +2 and +6.5 s from targets
- Three greater than +6.5 s from targets (22.2059 s largest)

Statistically Unacceptable Discrimination Tests (OS)	No. Of Tests
Gelation Index Severe	8
Total	8

- Eight Failing Discrimination Runs
 - Three different Test Labs
 - Seven different Test Heads

Tests Excluded From Statistics (Operationally or Otherwise)	Validity Code	No. Tests
Invalidated Runs	LC, LS, RC, RS	6
Aborted Runs	XC, XS	0
Informational Runs	MN, NN	3
Total		9

- Two Tests (2 x LC) lost due to Computer Error
- Four Tests (2 x LC; 2 x LS) lost due to Improper Leveling
- No (0) aborted runs this period
- Three requests for Informational (non-blind) runs

Period Precision and Severity Estimates

Gelation Index	n	df	Pooled s	Mean Δ/s
Targets Updated 202010011	34	32	1.44	
10/1/18 through 3/31/19	27	24	1.65	0.13
4/1/19 through 9/30/19	47	44	1.40	-0.25
10/1/19 through 3/31/20	41	37	2.45	-0.24
4/1/20 through 9/30/20	52	48	2.23	-0.11
10/1/20 through 3/31/21 ²	116	113	3.74	-0.86
4/1/21 through 9/30/21	75	73	1.71	-0.20
10/1/21 through 3/31/22	61	59	1.55	-0.84
4/1/22 through 9/30/22	57	55	1.28	-0.41
10/1/22 through 3/31/23	84	80	3.83	-0.08

¹Target precision updated to current reference oils GIA17 and 1009 only ²Changed from bath to head-based monitoring scheme 10/1/20

D5133 Precision Estimates

Gelation Index Pooled s

*Changed from bath to head-based monitoring scheme

D5133 Severity Estimates

Gelation Index

Mean Δ/s

*Changed from bath to head-based monitoring scheme

D5133 Lab Severity Estimates Gelation Index

Mean Δ/s

Lab A Lab AU Lab AY Lab B Lab BE Lab D Lab E1 Lab G LAB S n=25 n=2 n=2 n=11 n=23 n=9 n=2 n=7 n=1

- Fail rate of operationally valid tests is 17% this period
 - Compared to 6.9% fail rate last period
 - Fail rate of operationally valid discrimination runs is 15% this period
 - Historic period fail rates have ranged between 6% and 26%
- Precision (Pooled s) is much less precise than last period
 - Several valid calibration attempts were >> 3s off target
- Performance (Mean ∆/s) is -0.08 s mild and closer to target
 Six of Nine labs reporting mild of target
- GIC18, a new Reference Oil, was incorporated into the calibration testing rotation this period
 - 19 GIC18 Tests were completed this semester (6 Labs)
 - GIC18 targets will be revisited after completion of 30 tests
 - Replaces oil 58 that was reclassified as a discrimination oil

D5133 GELATION INDEX INDUSTRY OPERATIONALLY VALID DATA

GELATION INDEX

eviation Units

Standard

D5133 GELATION INDEX INDUSTRY OPERATIONALLY VALID DATA

GELATION INDEX

Deviation Units

Standard

22APR23:20:26

D5133 Performance by Oil

Gelation Index

D5133 Performance by Oil

Gelation Index

D5133 Performance by Oil

Gelation Index

Mean Δ/s

D02.B0.07 TMC Monitored Tests

NOACK Volatility

October 1, 2022 - March 31, 2023

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change shown in parentheses)

D5800: Evaporation Loss of Lubricating Oil by Noack Method

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	130
Failed Calibration Test	OC	6
Operationally Invalidated by Lab	LC	2
Total		138

Number of Labs Reporting Data: 11 Fail Rate of Operationally Valid Tests: 4.3%

D5800: Evaporation Loss of Lubricating Oil by Noack Method

Statistically Unacceptable Tests (OC)	No. Of Tests
Ei Level 3 Alarm Mild	2
Ei Level 3 Alarm Severe	2
Zi Level 2 Severity Alarm Severe	2

• The 6 OC tests were on four different rigs at 3 labs..

 \bullet No operationally valid tests have exceeded ± 3 s for last two test periods.

D5800: Evaporation Loss of Lubricating Oil by Noack Method

Failed (OC) Details	Procedure	Model	No. Tests
Zi Level 2 Alarm: Rig (BD1*) too Severe	В	NCK25G	1
Zi Level 2 Alarm: Rig (BD1*) too Severe	В	NCK25G	1
Ei Level 3 Alarm: Rig (B6) too imprecise to predict SA	В	NCK25G	1
Ei Level 3 Alarm: Rig (B7) too imprecise to predict SA	В	NCK25G	1
Ei Level 3 Alarm: Rig (D7) too imprecise to predict SA	D	NS2	1
Ei Level 3 Alarm: Rig (D7) too imprecise to predict SA	D	NS2	1
Total			6

Fail Rate of Operationally Valid Tests: 4.3%

*BD1 is a new rig that has not yet achieved calibration status.

D5800: Evaporation Loss of Lubricating Oil by Noack Method

Operationally Invalid Tests (LC)

Two operationally invalid calibration runs were reported this period

Both tests were lost due to faulty thermocouple. (LC)

D5800 Technical Memos

No D5800 technical memos were issued by the TMC this period.

D5800: Evaporation Loss of Lubricating Oil by Noack Method

Period Precision and Severity Estimates

Sample Evaporation Loss,		IC		
mass %	n	af	Pooled s	Mean Δ/s
Targets Effective 02/07/201	78	75	0.0465	
4/1/19 through 9/30/19	164	161	0.81	0.65
10/1/19 through 3/31/20 ¹	146	143	0.0503	0.54
4/1/20 through 9/30/201	136	133	0.0659	0.35
10/1/20 through 3/31/21 ¹	140	137	0.0495	0.53
4/1/21 through 9/30/211	136	133	0.0510	0.45
10/1/21 through 3/31/22	139	136	0.0463	0.24
4/1/22 through 9/30/22	136	133	0.0469	-0.10
10/1/2022 through 3/31/23	136	133	0.0545	-0.15

¹Began monitoring natural log transformed test results on 20200207 making logarithmic scale changes for target and period precision estimates starting April 2020 report period

D5800 Precision Estimates

*Began monitoring natural log transformed test results on 20200207 making logarithmic scale changes for target and period precision estimates starting April 2020 report period.

D5800 Severity Estimates

All Procedures: Oct22 - Mar23 Results

D5800 Lab Severity Estimates

Mean Δ/s

D5800: Evaporation Loss of Lubricating Oil by Noack Method

Performance Comparison by Procedure & Model

Sample Evaporation Loss, Mass %

Procedure	n	df	Pooled s	Mean ∆/s
Procedure B	87	85	0.0564	0.15
Procedure C	No Procedure C tests reported this period.			
Procedure D	49	47	0.0405	-0.78
Model	n	df	Pooled s	Mean Δ/s
NCK2	6	3	0.0151	-0.45
NCK25G	82	79	0.0579	0.19
NS2	48	45	0.0350	-0.70

1 Procedure B NCK2 Rig 15 Procedure B NCK25G Rigs 9 Procedure D NS2 Rigs

Procedure B: Oct22 – Mar23 Results

Procedure D: Oct22 - Mar23 Results

MODEL NCK2: Oct22 – Mar23 Results

MODEL NCK25G: Oct22 - Mar23 Results

MODEL NS2: Oct22 – Mar23 Results

D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA

EVAPORATION LOSS, MASS%

a rd

Stand

ALL

ALL

D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA

EVAPORATION LOSS, MASS%

14APR23:22:19

4590

4320

D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA

ANC

ALL

EVAPORATION LOSS, MASS%

D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA Procedure B ONLY EVAPORATION LOSS, MASS%

B only

D5800 VOLATILITY BY NOACK INDUSTRY OPERATIONALLY VALID DATA NCK25G ONLY EVAPORATION LOSS, MASS%

D only

(NS2)

D5800 Performance by Oil

Sample Evaporation Loss, mass %

Target* APR '21* OCT '21* APR '22* OCT '22* APR '23*

*Results transformed to natural log per updated LTMS 20200207

D5800 Performance by Oil

Target* APR '21* OCT '21 APR '22* OCT '22* API '23* *Results transformed to natural log per updated LTMS 20200207

D5800 Performance by Oil

D5800: Evaporation Loss of Lubricating Oil by Noack Method: Semester Summary

Precision (Pooled s) remains comparable to target precision (in natural log transformed units), but slightly higher than previous semester.

- Performance (Mean Δ /s) continues to move mild, falling from -0.10 s to -0.19 s in the past six months.
 - Procedure B rigs continue to trend slightly severe (0.17 s) while Procedure D rigs continue to trend mild (-0.78 s).
- CUSUM plot shows a reversing of the severe trend that the test has seen for many semesters and now shows a relatively flat line. This is due to mild test results from Procedure D units and Procedure B units coming out of a severe trend to be mostly on-target. The industry EWMA Control chart is currently in control.

D02.B0.07 TMC Monitored Tests

High Temperature Foam

October 1, 2022 - March 31, 2023

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change shown in parentheses)

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	16
Acceptable Discrimination Test	AS	7
Operationally Invalid, Reported as Valid	RC	1
Operationally Invalid, Reported by Lab	LC	1
Informational Run (Valid)	NN	4
Informational Run (Invalid)	LN	1
Total		30

Number of Labs Reporting Data: 6 Fail Rate of Operationally Valid Calibration Tests: 0%

Statistically Unacceptable Tests (OC, OS)	No. Of Tests
Foam Tendency Mild	0
Foam Tendency Severe	0

 All severe oil discrimination runs (on TMC oil 66) reported this period demonstrated acceptable discrimination.

 Discrimination runs are not evaluated for overall period precision or severity due to poor test precision above 100 ml foam tendency.

•There were no statistically unacceptable results this report period.

Operationally Unacceptable Tests (RC, LC)	No. Of Tests
No Option A (RC; Originally reported as Valid)	1
No Option A (LC; Lab reported as Invalid)	1
Total	2

- There were two operationally invalid results this report period.
- There were no statistically unacceptable results this report period.

Informational Runs (MN, NN, LN)	No. Of Tests
Non-blind Informational run on-target and valid (NN)	4
Non-blind Informational run invalid (LN)	1
Total	5

- There were four valid Informational results this report period.
- There was one Informational invalid result due to lost sample.

Period Precision and Severity Estimates

Foam Tendency, ml	n	df	Pooled s	Mean ∆/s
Targets updated 20201001 ¹	18	17	9	
10/1/18 through 3/31/19	14	13	12	-0.07
4/1/19 through 9/30/19	14	12	12	-0.18
10/1/19 through 3/31/20	15	13	10	-0.23
4/1/20 through 9/30/20	13	11	8	-0.85
10/1/20 through 3/31/21	12	10	7	-0.48
4/1/21 through 9/30/21	14	13	7	-0.48
10/1/21 through 3/31/22	13	12	7	-0.57
4/1/22 through 9/30/22	15	14	4	-0.52
10/1/22 through 3/31/23	16	15	10	-0.69

¹Target precision updated to current reference oil FOAMB18

Test Monitoring Center https://www.astmtmc.org

Period Precision and Severity Estimates

Foam Stability @ 1 min, ml	n	Mean	S
Current Targets	18	0.00	0.00
10/1/18 through 3/31/19	14	No non-zero o	occurrences
4/1/19 through 9/30/19	14	No non-zero o	occurrences
10/1/19 through 3/31/20	15	No non-zero o	occurrences
4/1/20 through 9/30/20	13	No non-zero o	occurrences
10/1/20 through 3/31/21	12	No non-zero o	occurrences
4/1/21 through 9/30/21	13	No non-zero o	occurrences
10/1/21 through 3/31/22	13	No non-zero o	occurrences
4/1/22 through 9/30/22	15	No non-zero o	occurrences
10/1/22 through 3/31/23	16	No non-zero o	occurrences

D6082 Performance by Oil

Foam Tendency, ml

Mean

D6082: High Temperature Foam

Foam Tendency, ml

Pooled s

D6082: High Temperature Foam

Current Period Severity Estimates by Lab

Foam Tendency, ml

D6082: High Temperature Foam

- Foam Tendency Precision (Pooled s) is higher than last period but on-target
 - More precise than oil FOAMB18 target precision
 - Oil 1007 has been completely consumed. Fourth consecutive report period where all reference tests were conducted only on replacement oil FOAMB18.
- Performance (Mean Δ/s) is -0.69s mild
 - Fourth consecutive period of -0.5+ s mild performance with FOAMB18.
 - Target performance, set on 18 runs in a RR, may need revisited.
- No non-zero occurrences of Foam Stability
- All seven severe oil discrimination runs (on TMC oil 66) demonstrated acceptable discrimination on foam tendency (>100 ml).

D6082 HIGH TEMPERATURE FOAM INDUSTRY OPERATIONALLY VALID DA

FOAM TENDENCY

COUNT IN COMPLETION DATE ORDER

D6082 HIGH TEMPERATURE FOAM INDUSTRY OPERATIONALLY VALID DA LAST 120 POINTS FOAM TENDENCY

D02.B0.07 TMC Monitored Tests

ASTM D 6335 TEOST

October 1, 2022 - March 31, 2023

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change shown in parentheses)

Test Status	Validity Code	No. Tests
Acceptable Calibration Tests	AC	28
Failed Calibration Tests	OC	7
Acceptable Discrimination Tests	AS	1
Acceptable Non-Blind / Informational Runs	NI, NN	6
Operationally Invalidated by Lab	LC	3
Total		45

Number of Labs Reporting Data: 8 (8 Labs Last Period) Fail Rate of Operationally Valid Tests: 20.0% (13.8% Last Period)

Statistically Unacceptable Tests (OC)	No. Of Tests
Total Deposits Severe	7

• The seven (7) statistically unacceptable results this period were fails on four stands (A1, G3, G4 and P1); all seven results severe of target.

There were three operationally invalid tests reported this period.

•One (1) Wrong Sample Ran by Lab

•One (1) Lab had faulty Pump

•One (1) Wrong Sample Batch Delivered to Lab

No new Information Letters or Memos in the past year

Period Precision and Severity Estimates

Total Deposits, mg	n	df	Pooled s	Mean Δ/s
Updated Targets 20201001 ¹	46	44	4.85	
4/1/17 through 9/30/19 ² 4/1/17 through 9/30/19 ²	30 26	28 24	12.66 7.35	0.47 -0.23
10/1/19 through 3/31/20	32	30	6.08	0.28
4/1/20 through 9/30/20 ³ 4/1/20 through 9/30/20 ³	33 26	30 23	11.44 10.10	0.02 -0.02
10/1/20 through 3/31/21	26	23	8.39	0.42
4/1/21 through 9/30/21	31	28	8.27	-0.36
10/1/21 through 3/31/22	27	25	6.22	0.55
4/1/22 through 9/30/22	29	27	10.32	0.80
10/1/22 through 3/31/23	35	33	8.53	0.84

¹Target precision updated to include only current oils 75–1 and 435–2 ²Four consecutive OC results on same rig included and excluded. ³Rig with six OC results included and excluded.

Test Monitoring Center

D6335 Precision Estimates

Total Deposits, mg Pooled s

D6335 Severity Estimates

Total Deposits, mg

D6335 Lab Severity Estimates

- Precision (Pooled s) is better when compared to the previous period (8.53 vs 10.32 in OCT '22)
 - > There were no tests reported using oil 75 for 3rd consecutive period
- > Performance (Mean Δ/s) is 0.84 s severe this period (comparable to 0.80 s last period)
- > Period fail rate of 20% on tests reported as operationally valid
 - Fail rate continues to climb (7.0% -> 13.8% -> 20%) when compared to last two six-month reporting periods.
 - All on Rod Batch N
 - Four Units had Seven fails from Three labs
- > All tests this period report using Rod Batch M (n=2) or N (n=33).

TEOST -- 33C INDUSTRY OPERATIONALLY VALID DATA

24APR23:21:17

TOTAL DEPOSITS MG

CUSUM Severity Analysis

U n its

eviation

2 0

B

σ

tan

ഗ

TEOST -- 33C INDUSTRY OPERATIONALLY VALID DATA

TOTAL DEPOSITS MG

COUNT IN COMPLETION DATE ORDER

D6335 Performance by Oil

Total Deposits, mg

Mean

D6335 Performance by Oil

Total Deposits, mg

D6335 Performance by Oil

Total Deposits, mg

Mean Δ/s

from of ASTM in

D02.B0.07 TMC Monitored Tests

>> ASTM D 6417

October 1, 2022 - March 31, 2023

A Program of ASTM Internation

Calibrated Labs and Stands*

(change shown in parentheses)

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	18
Failed Calibration Test	OC	0
Total		18

Number of Labs Reporting Data: 7 Fail Rate of Operationally Valid Tests: 0%

Statistically Unacceptable Tests (OC)	No. Of Tests
Volatility Loss Mild	0
Volatility Loss Severe	0

There were no statistically invalid tests reported this period
There were no operationally invalid tests reported this period
No D6417 TMC technical updates were issued this report period.

Period Precision and Severity Estimates

Area % Volatized @ 371°C	n	df	Pooled s	Mean ∆/s
Initial Selected Oils from RR	54	51	0.39	
10/1/19 through 3/31/20	17	14	0.30	0.09
4/1/20 through 9/30/20*	16	13	0.41	-0.34
4/1/20 through 9/30/20*	14	11	0.31	0.01
10/1/20 through 3/31/21*	21	18	0.47	-0.81
10/1/20 through 3/31/21*	19	16	0.37	-0.43
4/1/21 through 9/30/21	17	14	0.39	-0.28
10/1/21 through 3/31/22	20	17	0.51	0.13
4/1/22 through 9/30/22	19	16	0.48	-0.67
10/1/22 through 3/31/23	18	15	0.43	0.41

*Period statistics with two mild results from rigs D5/D6 included and excluded (operational problem suspected but lab never confirmed)

D6417 Precision Estimates

Area % Volatized @ 371°C Pooled s

D6417 Severity Estimates

Area % Volatized @ 371°C Mean ∆/s

D6417 Lab Severity Estimates

Area % Volatized @ 371°C

Mean Δ /s

- Precision (Pooled s) has been very consistent over the past 6 semesters.
- Performance (Mean Δ/s) has flipped to +0.41 s severe but closer to target compared to prior reporting period (-0.67 s).
- CUSUM severity plot is currently in a MILD trend but has been relatively "flat" for the past three semesters, circling around CUSUM value of 19.7 during this time.

D6417 VOLATILITY BY GC INDUSTRY OPERATIONALLY VALID DATA

SAMPLE AREA % VOLATIZED

COUNT IN COMPLETION DATE ORDER

D6417 VOLATILITY BY GC INDUSTRY OPERATIONALLY VALID DATA LAST 90 DATA POINTS SAMPLE AREA % VOLATIZED

COUNT IN COMPLETION DATE ORDER

D6417 Performance by Oil

Distribution of VOLt

<u>ہ</u>

F 397.30 Prob > F <.0001

D6417 Performance by Oil

Distribution of VOLyi

TMC OIL CODE

F 0.27 Prob > F 0.7684

D6417 Performance by Oil

Area % Volatized @ 371°C

Mean Δ/s

D02.B0.07 TMC Monitored Tests

Ball Rust Test (BRT)

October 1, 2022 - March 31, 2023

A Program of ASTM Internationa
Calibrated Labs and Stands*

(change shown in parentheses)

BRT Test Activity*

Test Status	Validity Code	Number of Tests
Acceptable Calibration Test	AC	154
Failed Calibration Test	OC	13
Operationally Invalid, by Lab	LC	16
Aborted Calibration Run	XC	2
Acceptable Shakedown Run	NN	2
Unacceptable Shakedown Run	MN	4
Total		191

• 5 labs reported data

*April 1, 2022 - September 30, 2022

BRT Failed Tests

Failed Parameter (OC)	Number of Tests
Severe Average Gray Value	13
Mild Average Gray Value	0
Total	13

Failed Parameter (MN)	Number of Tests
Severe Average Gray Value	2
AGV Difference between tubes > 15	2
Total	4

BRT Failed Tests (OC) by Lab

Failed Parameter		LTMS Lab						
raneu rarameter	А	В	D	G	L	#		
Severe Average Gray Value	2	2	1	8	0	13		
Mild Average Gray Value	0	0	0	0	0	0		
Total	2	2	1	8	0	13		

BRT Lost Tests*

Failed Parameter (LC, XC)	Number of Tests
Acid Batch Off-Spec (LC)	15
Shaker Table Malfunction (LC)	1
Acid Injector Malfunction (XC)	1
Sample Leak (XC)	1
Total	18

*Invalid (LC) and Aborted (XC) calibration tests

BRT Lost Tests by Lab

Сансе		LTMS Lab							
Cause	Α	В	D	G	L	#			
Acid Batch Off-Spec	4	0	0	11	0	15			
Acid Injector Malfunction	0	0	0	1	0	1			
Sample Leak	0	0	0	1	0	1			
Shaker Table Malfunction	1	0	0	0	0	1			
Total	5	0	0	13	0	18			

BRT Test Severity

 Average Gray Value (AGV) continues to trend slightly severe this semester after a MILD Peak last period. But overall, CUSUM has been relatively "flat" for the past six years (since April 2017).

BALL RUST TEST INDUSTRY OPERATIONALLY VALID DATA

REFERENCE AVERAGE GRAY VALUE

BALL RUST TEST INDUSTRY OPERATIONALLY VALID DATA LAST 500 POINTS REFERENCE AVERAGE GRAY VALUE

BRT Precision (Pooled s) Estimates

AGV

BRT Performance (Mean Δ /s) Estimates

AGV

Average Gray Value Mean

Average Gray Value Standard Deviation

Average Gray Value MEAN Δ/s

APR '23

Information Letters*

Test	Date	IL	Торіс
			No new information letters this period.

*Available from TMC Website

Reference Oil Inventory Estimated Life

Oil	TMC Inventory (gallons)	Quantity Shipped in last 6 months (gallons)	Lab Inventory (samples)	Estimated Life
1006	29.7	0.3	28	5+ years
82-1	2.3	0.2	32	3 years
86	50.1	0.2	26	5+ years
87	93.9	0.2	29	5+ years

D02.B0.07 TMC Monitored Tests

High Temperature Corrosion Bench Test (HTCBT)

October 1, 2022 - March 31, 2023

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change shown in parentheses)

HTCBT Test Activity*

Test Status	Validity Code	Number of Tests
Acceptable Calibration Test	AC	239
Failed Calibration Test	OC	23**
Operationally Invalid, by lab	LC	3
Aborted Calibration Test	XC	1
Acceptable Shakedown Run	NN	16
Unacceptable Shakedown Run	MN	15
Total		297

10 labs reported data **23 (up from 16 previous semester).

*April 1, 2022 - September 30, 2022

HTCBT Failed Tests

Failed Parameter	Number of Tests
Lead Concentration Severe	8
Lead Concentration Mild	1
Copper Concentration Severe	4
Copper Concentration Mild	1
Lead and Copper Concentrations (both) Severe	6
Lead and Copper Concentrations (both) Mild	3
Total	23

HTCBT Failed Tests by Lab

Failed Parameter		LTMS Lab								#	
		L	G	I	V	BB	BC	В	Р	BE	Ħ
Lead Concentration Severe	1	0	2	4	1	0	0	0	0	0	8
Lead Concentration Mild	0	0	0	0	0	0	0	0	0	1	1
Copper Concentration Severe	0	0	0	4	0	0	0	0	0	0	4
Copper Concentration Mild	0	0	0	1	0	0	0	0	0	0	1
Lead & Copper Concentrations Severe	1	0	0	2	1	0	1	0	0	1	6
Lead & Copper Concentrations Mild	0	0	0	0	0	0	0	0	0	3	3
Total	2	0	2	11	2	0	1	0	0	5	23

HTCBT Lost Tests*

Status	Cause	#
Invalid	Temperature Bath / Heater Malfunction	3
Invalid	Air Flow Malfunction	1
Total		4

*Invalid or Aborted calibration tests

HTCBT Lost Tests by Lab

Failed Parameter	LTMS Lab										#
	Α	L	G	1	V	BB	BC	В	Р	BE	#
Temperature Bath / Heater Malfunction	0	0	0	2	0	0	0	0	0	1	3
Air Flow Malfunction	0	0	1	0	0	0	0	0	0	0	1
Total	0	0	1	2	0	0	0	0	0	1	4

HTCBT Test Severity

- Copper concentration trending severe
- Lead concentration trending severe
- Some labs had test results with extremely large variance from expected means. These "outlier" (?) results have raised concerns and requests to understand if this is a lab or industry issue.
 - New Chairperson for HTCBT Surveillance Panel needs to be identified

HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA

COPPER CHANGE (ppm)

HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA Last 600 Points ONLY COPPER CHANGE (ppm)

HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA

LEAD CHANGE (ppm)

HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA Last 600 Points ONLY LEAD CHANGE (ppm)

HTCBT Precision (Pooled s) Estimates

CUC Standard Deviation results ranged from -40.2 (Oil 44-4) to + 11.3 (Oil 1005-5). Significant deviations from the expected targets are impacting the plot summaries.

HTCBT Performance (mean Δ/s) Estimates

HTCBT Precision (Pooled s) Estimates

PBC

HTCBT Performance (mean Δ/s) Estimates

PBC

https://www.astmtmc.org

Copper Concentration*

Mean

Copper Concentration Standard Deviation

Copper Concentration

MEAN Δ/s

Lead Concentration

A Drogram of ASTM In
HTCBT Performance by OIL

Lead Concentration Standard Deviation

HTCBT Performance by OIL

Lead Concentration

MEAN Δ/s

https://www.astmtmc.org

nam of ASTM Is

HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA Oil 1005 - ONLY COPPER CHANGE (ppm)

HIGH TEMP CBT INDUSTRY OPERATIONALLY VALID DATA Oil 1005 - ONLY LEAD CHANGE (ppm)

U n its

D e v ia tio n

Stand ard

COUNT IN COMPLETION DATE ORDER

25APR23:23:13

Information Letters*

Test	Date	IL	Торіс
			No information letters this period.

*Available from TMC Website

Reference Oil Inventory Estimated Life

Oil	TMC Inventory (gallons)	Quantity Shipped in last 6 months (gallons)	Lab Inventory (samples)	Estimated Life
44-4	3.7	3.2	96	<1 year
44-5	53	0.4	13	>5 year
1005-5	49.9 (Reserved drum - Additional oil available at the TMC)	6.7	202	>5 years

Oil 44–5 Batch has been approved for use by the surveillance panel. TMC has shipped some blind coded 44–5 TESTKEYs to labs and will begin to assign these samples when Batch 44–4 TESTKEYs have been consumed.

D02.B0.07 TMC Monitored Tests

Engine Oil Water Tolerance (EOWT)

October 1, 2022 - March 31, 2023

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change shown in parentheses)

EOWT Test Activity by Treat Rate

Test Status	Validity	Number of Tests by Water Treat Rate				Total
	Coue	0.6%	1.0%	2.0%	3.0%	
Acceptable Calibration Test	AC	159	159	158	158	634
Failed Calibration Test	OC	1	2	0	0	3
Acceptable Information Run	NN	0	0	9	0	9
Unacceptable Information Run	MN	0	0	3	0	3
Aborted Calibration Test	XC	3	4	3	4	14
Total		163	165	173	162	663

• 6 labs reported data

April 1, 2022 - September 30, 2022

EOWT Test Activity by Reference Oil*

Test Status	Validity Code	Number by Refere	Total	
		79	77-3	
Acceptable Calibration Test	AC	321	313	634
Failed Calibration Test	OC	0	3	3
Acceptable Informational Test	NN	6	3	9
Unacceptable Informational Test	MN	0	3	3
Aborted Calibration	XC	8	6	14
Total		335	328	663

• One (1) Lab requested all 12 Informational runs

April 1, 2022 - September 30, 2022

EOWT Failed Tests

Failed Parameter (OC)	1	Total			
	0.6%	1.0%	2.0%	3.0%	Totai
Severe Change in Flowrate	1	2	0	0	3
Mild Change in Flowrate	0	0	0	0	0
Total	1	2	0	0	3

April 1, 2022 – September 30, 2022

EOWT Failed Tests by Lab

Eailed Parameter (OC)	LTMS Lab						#
Falleu Falailletei (OC)	А	В	BE	G	I	L	#
Severe Change in Flowrate	0	0	3	0	0	0	3
Mild Change in Flowrate	0	0	0	0	0	0	0
Total	0	0	3	0	0	0	3

April 1, 2022 - September 30, 2022

EOWT Lost Calibration Tests*

Cause		Number of Tests					
		1.0%	2.0%	3.0%			
Incorrect sample preparation	3	3	3	4	13		
Operator Error	0	1	0	0	1		
Total	3	4	3	4	14		
		191					

*Invalid (LC,RC) and Aborted (XC) calibration tests

April 1, 2022 – September 30, 2022

EOWT Test Severity

Change in flowrate continues to trend severe for all water treat rates, however the severe trends are abating, especially for the 0.6% testing which showed a significant flattening of its CUSUM plot in the second half of this reporting period.

April 1, 2022 – September 30, 2022

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 0.6% WATER TREAT RATE 20 - 25 ML CHANGE IN FLOWRATE AVG.

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 0.6% WATER TREAT RATE; Last 400 20 - 25 ML CHANGE IN FLOWRATE AVG.

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 1.0% WATER TREAT RATE 20 - 25 ML CHANGE IN FLOWRATE AVG.

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 1.0% WATER TREAT RATE: Last 400 20 - 25 ML CHANGE IN FLOWRATE AVG.

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 2.0% WATER TREAT RATE 20 - 25 ML CHANGE IN FLOWRATE AVG.

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 2.0% WATER TREAT RATE: Last 400 20 - 25 ML CHANGE IN FLOWRATE AVG.

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 3.0% WATER TREAT RATE 20 - 25 ML CHANGE IN FLOWRATE AVG.

EOWT INDUSTRY OPERATIONALLY VALID DATA CFA 3.0% WATER TREAT RATE: Last 400 20 - 25 ML CHANGE IN FLOWRATE AVG.

EOWT Precision (Pooled s) Estimates

CFA

EOWT Performance (Mean Δ /s) Estimates

EOWT 0.6% Results by Reference Oil

EOWT 1.0% Results by Reference Oil

A Program of ASTM in

EOWT 2.0% Results by Reference Oil

April 1, 2022 – September 30, 2022

Test Monitoring Center

EOWT 3.0% Results by Reference Oil

April 1, 2022 – September 30, 2022

Test Monitoring Center

Information Letters*

Test	Date	IL	Торіс
			No new information letters this period.

*Available from TMC Website

April 1, 2022 - September 30, 2022

Reference Oil Inventory Estimated Life EOWT

Oil	TMC Inventory (gallons)	Quantity Shipped in last 6 months (gallons)	Lab Inventory (samples)	Estimated Life*
77-3	465.5	26.2	325	5+ years
79	240.2	26.3	327	3.7 years

*Based upon Sample Shipping Rate from past 6 months.

D02.B0.07 TMC Monitored Tests

Engine Oil Filterability Test (EOFT)

October 1, 2022 - March 31, 2023

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change shown in parentheses)

EOFT Test Activity*

Test Status	Validity Code	Number of Tests
Acceptable Calibration Test	AC	122
Failed Calibration Test	OC	2
Aborted Calibration Test	XC	0
Acceptable Shakedown Run	NN	0
Unacceptable/Aborted Shakedown Run	MN / XN	0
Total		124

- 98.4% Acceptable Calibration (AC) Testing Rate
 - 6 labs reported data this semester

*April 1, 2022 - September 30, 2022

EOFT Failed Tests

Failed Parameter	Number of Tests
Change in Flow Average (CIFA) Severe	2
Change in Flow Average (CIFA) Mild	0
Total	2

• The two fails were from two different test labs.

EOFT Failed Tests by Lab

Epiled Parameter		LTMS Lab					
raneu rarameter	А	В	G	I	L	BE	#
Change in Flow Average (CIFA) Severe	1	0	1	0	0	0	2
Totals	1	0	1	0	0	0	2

EOFT Lost Tests*

Status	Cause	No. of Tests
Invalid (L,R)		0
Aborted (X)		0
Total		0

*Invalid and aborted calibration tests

EOFT Information/Shakedown Tests

Informational / Shakedown Results	Number of Tests
None	0
Total	0

EOFT Test Severity

Change in Flow Average (CIFA) is trending severe with a very consistent CUSUM slope over the past two years.

EOFT INDUSTRY OPERATIONALLY VALID DATA

20 - 25 ML CHANGE IN FLOWRATE AVERAGE (%)

EOFT INDUSTRY OPERATIONALLY VALID DATA Last 250 Points ONLY 20 — 25 ML CHANGE IN FLOWRATE AVERAGE (%)

EOFT Precision Estimates CIFA Pooled s

APR	OCT	APR	OCT	APR	OCT	APR	OCT	APR
'19	'19	'20	'20	'21	'21	'22	'22	'23

EOFT Lab Severity Estimates

CIFA Mean ∆/s

Test Monitoring Center https://www.astmtmc.org

Information Letters*

Test	Date	IL	Торіс
			No new information letters this period.

*Available from TMC Website

Reference Oil Inventory Estimated Life EOFT

Oil	TMC Inventory (gallons)	Quantity Shipped in last 6 months (gallons)	Lab Inventory (samples)	Estimated Life
79	240.2	31.4	128	2.5 years

D02.B0.07 TMC Monitored Tests

ASTM D 7097

Medium High Temperature TEOST (MTEOS)

October 1, 2022 - March 31, 2023

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change shown in parentheses)

D7097: Deposits by MTEOS

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	61
Failed Calibration Test	OC	6
Operationally Invalidated by Lab	LC	5
Operationally Invalidated After Initially Reported as Valid	RC	1
Acceptable Informational Run	NN	1
Unacceptable Informational Run	MN	2
Total		76

Number of Labs Reporting Data: 10 (+2) Fail Rate of Operationally Valid Tests: 9%

D7097: Deposits by MTEOS

Statistically Unacceptable Tests (OC)	No. Of Tests
Total Deposits Mild	0
Total Deposits Severe	6
Total	6

Three Labs had OC results.

D7097: Deposits by MTEOS Summary of Invalid Tests

Operationally Invalid Tests (LC, RC)	Validity Code	No. Of Tests
Compressor Failure	LC	2
Initial Rod Weight not Recorded	LC	2
Sample Contaminated	LC	1
Catalyst Weight Out of Range	RC	1
Total		6

D7097: Deposits by MTEOS Summary of Informational Tests

Informational / Shakedown Tests (NN, MN)	Validity Code	No. Of Tests
Shakedown run, Deposits in Range	NN	1
Shakedown run, Deposits not in Range (Severe)	MN	2
Total		3

D7097: Deposits by MTEOS

Period Precision and Severity Estimates

Total Deposits, mg	n	df	Pooled s	Mean Δ /s
Current Targets 9/30/20211	38	36	4.94	
10/1/18 through 3/31/19	97	95	5.86	-0.14
4/1/19 through 9/30/19	109	107	6.40	-0.30
10/1/19 through 3/31/20	103	101	7.02	-0.02
4/1/20 through 9/30/20	72	70	4.87	-0.22
10/1/20 through 3/31/21	101	99	8.40	0.17
4/1/21 through 9/30/21	81	78	7.25	-0.02
10/1/21 through 3/31/22	75	73	8.86	0.18
4/1/22 through 9/30/22	77	75	7.69	0.69
10/1/22 through 3/31/23	67	65	7.03	0.41

¹Target precision updated to reference oils 432 and 434-3 preliminary

*Target precision updated to reference oils 432 and 434-3 preliminary

*One severe OC test from instrument G5 excluded (8.9 s)

D7097 Lab Severity Estimates

Total Deposits, mg

Mean Δ/s

D7097: Deposits by MTEOS

Total Deposits, mg Mean Δ /s Severity by CATBATCH and Period

D7097: Deposits by MTEOS

- Precision (Pooled s) remains high, but did move closer to target in this reporting period
 - Best precision result since October 2020
- > Performance (Mean Δ /s) has improved, moving from 0.69 s down to 0.41 s
- All operationally valid tests this period report using Rod Batches M (n=2) or N (n=65).
- All operationally valid calibration tests this period report using Catalyst Batch 19BA (n=4) or 20AB (n=63)

D7097: Deposits by MHT TEOST

- Overall severity on catalyst batch 19BA (n=348) appears to be on target for oils 432, 434 and 434-3 (Yi = -0.02).
- Overall severity on catalyst batch 20AB (n=160) appears to be slightly severe of target for oils 432, 434 and 434-3 (Yi = 0.54), but improving from severity at previous report (Yi = 0.65)

MHT -4 TEOST INDUSTRY OPERATIONALLY VALID DATA

TOTAL DEPOSITS MG

CUSUM Severity Analysis

27APR23:22:03

MHT-4 TEOST INDUSTRY OPERATIONALLY VALID DATA

TOTAL DEPOSITS MG

MHT-4 TEOST INDUSTRY OPERATIONALLY VALID DATA

CATALYST BATCH TOTAL DEPOSITS MG

27APR23:22:51

D7097 Performance by Oil

Total Deposits, mg

Mean

D7097: Deposits by MHT TEOST

Total Deposits, mg

S_R

Target APR '20 OCT '20 APR '21 OCT '21 APR '22 OCT '22 APR '23

D7097: Deposits by MHT TEOST

Total Deposits, mg

Mean Δ/s

D02.B0.07 TMC Monitored Tests

Engine Oil Elastomer Compatibility (EOEC/HDEOC)

October 1, 2022 - March 31, 2023

A Program of ASTM Internationa

Test Monitoring Center

https://www.astmtmc.org

ASTM Reference Testing Semi-Annual Report D7216 EOEC

October 1, 2022 - March 31, 2023

ASTM D 7216

Engine Oil Elastomer Compatibility (EOEC/HDEOC)

OHT CURRENT ELASTOMER BATCH CODES FOR ASTM D7216 AS OF: 3/9/2023

EOEC (PC 9)				
OHT PART NUMBER	BATCH CODE			
OHTPC9-NBR-1	29			
OHTPC9-ACM-2	31			
OHTPC9-FKM-1	30			
OHTPC9-MAC-1	23			

LDEOC (J2643)							
OHT PART NUMBER	BATCH CODE						
OHTJ2643-HNBR-1	30						
OHTJ2643-FKM-1	28						
OHTJ2643-ACM-2	25						
OHTJ2643-VMQ-1	40						
OHTJ2643-AEM-2	30						

A Program of ASTM International

Calibrated Labs and Stands*

(change shown in parentheses)

October 1, 2022 - March 31, 2023

EOEC Test Activity*

Test Status		Fluoroelast.	Nitrile	Polyacrylate	Silicone	VAMAC	Total
Acceptable Calibration Test	AC	58	67	61	56	55	297
Failed Calibration Test	OC	0	0	0	0	2	2
Operationally Invalid, by lab	LC	0	4	0	0	0	4
Operationally Invalid, by TMC	RC	0	0	0	0	0	0
Aborted	XC	0	0	0	0	0	0
Total		58	71	61	56	57	303

*October 1, 2022 - March 31, 2023

EOEC Failed Calibration Tests*

Cause	Elastomer	No. of Tests
Tensile Strength Change (MILD)	EOECV	1
Volume Change (MILD)	EOECV	1
Total		2

*Two failing calibration tests, one (each) reported by two different labs

EOEC Lost Tests*

Validity	Cause	No. of Tests
LC	Wrong Temperature	1
LC	Wrong Elastomer Material	1
LC	Sample Lost	2
Total		4

*Invalid and aborted calibration tests

EOEC Test Severity

Fluoroelastomer (FKM)

Parameter	Period Mean ∆/s	Status
Volume Change	-0.04	On-Target
Points Hardness Change	0.00	On-Target
Tensile Strength Change	0.57	Severe
Elongation Change	-0.58	Mild

EOEC Precision (Pooled s) Estimates: Fluoroelastomer

EOEC Precision Estimates by Lab: FKM

	Statistic	LTMS Lab					
Test Parameter	Statistic	А	В	L	I	G	
	n=	19	3	4	14	18	
	Mean	0.37	0.39	0.35	0.61	0.39	
Volume	Pooled s	0.10	0.08	0.05	0.30	0.14	
	Mean /s	-0.46	-0.34	-0.61	1.12	-0.32	
Hardness	Mean	8.89	9.67	8.25	7.71	7.06	
	Pooled s	1.15	1.15	1.26	1.44	1.95	
	Mean /s	0.39	0.74	0.1	-0.15	-0.45	
	Mean	-70.8	-72.3	-70.4	-65.4	-66.7	
Tensile Strength	Pooled s	1.93	2.14	1.78	0.69	4.44	
2	Mean /s	0.09	-0.19	0.17	1.10	0.87	
	Mean	-67.8	-66.2	-68.1	-58.3	-62.3	
Elongation	Pooled s	2.69	1.51	1.42	6.27	4.53	
J	Mean /s	-1.04	-0.86	-1.07	0.02	-0.42	

EOEC — FLUOROELASTOMER INDUSTRY OPERATIONALLY VALID DATA

FLUOROELASTOMER VOLUME CHANGE CORRECTED AVERAGE

EOEC - FLUOROELASTOMER INDUSTRY OPERATIONALLY VALID DATA

FLUOROELASTOMER PTS HARDNESS CHANGE CORRECTED AVG

EOEC - FLUOROELASTOMER INDUSTRY OPERATIONALLY VALID DATA

FLUOROELASTOMER TENS STRENGTH CHANGE CORRECTED AVG

EOEC - FLUOROELASTOMER INDUSTRY OPERATIONALLY VALID DATA

FLUOROELASTOMER ELONGATION CHANGE CORRECTED AVG

EOEC Test Severity

Nitrile (NBR)

Parameter	Period Mean ∆/s	Status
Volume Change	0.06	On-Target
Points Hardness Change	0.83	Severe
Tensile Strength Change	-0.68	Mild
Elongation Change	-0.15	Slightly Mild

EOEC Precision Estimates – Nitrile

EOEC Precision Estimates by Lab: NBR

	Statistic	LTMS Lab					
Test Parameter		А	В	L	I	G	
	n=	24	3	4	16	20	
	Mean	1.93	2.36	1.49	2.02	1.42	
Volume	Pooled s	0.31	0.27	0.09	0.51	0.56	
	Mean /s	0.23	0.73	-0.30	0.33	-0.38	
	Mean	3.08	3.67	3.00	3.12	3.70	
Hardness	Pooled s	0.72	1.15	0.82	0.72	1.13	
	Mean /s	0.71	1.04	0.66	0.73	1.06	
	Mean	-0.16	-7.43	2.12	-1.94	-4.76	
Tensile Strength	Pooled s	4.75	3.14	3.92	2.66	6.94	
-	Mean /s	-0.40	-1.40	-0.09	-0.64	-1.03	
	Mean	-34.7	-37.6	-34.3	-37.5	-32.2	
Elongation	Pooled s	4.19	0.44	1.64	3.43	8.50	
	Mean /s	-0.15	-0.58	-0.91	-0.56	0.22	

REFERENCE NITRILE VOLUME CHANGE CORRECTED AVERAGE

REFERENCE NITRILE PTS HARD CHANGE CORRECTED AVG

REF NITRILE TENS STRENGTH CHANGE CORRECTED AVG

REF NITRILE ELONGATION CHANGE CORRECTED AVERAGE

EOEC Test Severity

Polyacrylate (ACM)

Parameter	Period Mean ∆/s	Status
Volume Change	1.81	Severe
Points Hardness Change	-0.21	Mild
Tensile Strength Change	-0.26	Mild
Elongation Change	0.33	Severe

EOEC Precision Estimates – Polyacrylate

EOEC Precision Estimates by Lab: ACM

	Statistic	LTMS Lab					
Test Parameter		А	В	L	I	G	
	n=	20	2	4	15	20	
	Mean	1.35	1.51	1.60	1.99	1.49	
Volume	Pooled s	0.21	0.20	0.48	0.66	0.46	
	Mean /s	1.51	1.72	1.84	2.36	1.70	
· · · ·	Mean	-0.55	-1.00	-1.00	-0.67	-0.30	
Hardness	Pooled s	1.15	1.41	0.82	1.10	2.39	
	Mean /s	-0.30	-0.55	-0.55	-0.03	-0.16	
—	Mean	-1.80	0.80	-3.50	-1.25	-1.84	
Tensile Strength	Pooled s	6.58	2.12	6.48	7.26	8.37	
	Mean /s	-0.27	0.05	-0.48	-0.20	-0.27	
	Mean	-21.8	-15.6	-13.5	-23.2	-16.3	
Elongation	Pooled s	11.05	11.95	10.70	6.70	10.63	
3	Mean /s	0.08	0.79	1.01	-0.07	0.70	

REFERENCE POLYACRYLATE VOLUME CHANGE CORRECTED AVG

REF POLYACRYLATE PTS HARD CHANGE CORRECTED AVG

REF POLYACRYLATE TENS STRNGTH CHANGE CORRECTED AVG

REF POLYACRYLATE ELONGATION CHANGE CORRECTED AVG

EOEC Test Severity

Silicone (VMQ)

Parameter	Period Mean ∆/s	Status
Volume Change	0.61	Severe
Points Hardness Change	-0.72	Mild
Tensile Strength Change	0.52	Severe
Elongation Change	0.22	Severe

EOEC Precision Estimates – Silicone

EOEC Precision Estimates by Lab: VMQ

	Statistic	LTMS Lab					
Test Parameter	JIALISLIC	А	В	L	I	G	V
	n=	17	3	4	14	16	2
	Mean	33.3	33.2	29.2	31.6	38.3	32.4
Volume	Pooled s	1.65	0.81	1.29	1.06	1.51	0.01
	Mean /s	0.40	0.36	-1.00	-0.20	2.07	0.06
	Mean	-24.5	-23.7	-18.8	-22.4	-23.2	-24.0
Hardness	Pooled s	1.33	1.15	0.50	1.65	1.84	0
	Mean /s	-1.37	-0.97	1.44	-0.37	-0.77	-1.14
	Mean	-28.4	-27.8	-31.4	-37.3	-32.5	-24.0
Tensile Strength	Pooled s	3.15	5.46	0.78	3.16	4.88	1.77
	Mean /s	1.44	1.60	0.64	-0.97	0.33	2.62
	Mean	-23.9	-17.1	-18.6	-24.0	-25.2	-21.7
Elongation	Pooled s	2.66	5.97	3.31	5.80	9.06	1.27
	Mean /s	0.15	1.23	1.00	0.13	-0.06	0.50

REFERENCE SILICON VOLUME CHANGE CORRECTED AVG

REFERENCE SILICON PTS HARD CHANGE CORRECTED AVG

REF SILICON TENSILE STRENGTH CHANGE CORRECTED AVG

REF SILICON ELONGATION CHANGE CORRECTED AVG

EOEC Test Severity

VAMAC (MAC)

Parameter	Period Mean ∆/s	Status
Volume Change	0.40	Severe
Points Hardness Change	-0.88	Mild
Tensile Strength Change	0.05	On-Target
Elongation Change	-0.40	Mild

EOEC Precision Estimates – VAMAC

EOEC Precision Estimates by Lab: MAC

	Statistic	LTMS Lab					
Test Parameter		А	В	L	I	G	
	n=	19	3	4	14	17	
	Mean	18.8	18.9	17.5	19.6	19.5	
Volume	Pooled s	0.41	0.39	0.40	0.77	3.31	
	Mean /s	0.18	0.25	-0.67	0.71	0.66	
	Mean	-8.79	-9.00	-6.50	-8.57	-7.88	
Hardness	Pooled s	1.08	1.00	0.58	0.85	1.27	
	Mean /s	-1.38	-1.60	1.03	-1.15	-0.42	
	Mean	-13.3	-16.4	-18.0	-14.8	-16.3	
Tensile Strength	Pooled s	5.08	4.24	2.34	3.28	3.81	
3	Mean /s	0.41	-0.23	-0.55	0.10	-0.20	
	Mean	-38.3	0.88	-38.0	-41.9	-33.6	
Elongation	Pooled s	4.98	-41.3	2.43	3.28	10.26	
	Mean /s	-0.46	1.50	-0.40	-0.94	0.18	

EOEC -VAMAC INDUSTRY OPERATIONALLY VALID DATA

REFERENCE VAMAC G VOLUME CHANGE CORRECTED AVERAGE

EOEC -- VAMAC INDUSTRY OPERATIONALLY VALID DATA

REF VAMAC G POINTS HARDNESS CHANGE CORRECTED AVG

EOEC -VAMAC INDUSTRY OPERATIONALLY VALID DATA

REF VAMAC G TENSILE STRENGTH CHANGE CORRECTED AVG

EOEC -VAMAC INDUSTRY OPERATIONALLY VALID DATA

REF VAMAC G ELONGATION CHANGE CORRECTED AVG

Information Letters & Technical Updates*

Test	Date	IL or Memo Number	Торіс
EOEC	20230118	M23-002*	Elastomer SP Votes to Eliminate the use of 1006 Reference Oil

*Available from TMC Website

Reference Oil Inventory Estimated Life EOEC/LDEOC

Oil	TMC Inventory Gallons	Gallons Shipped Past 12 Months	Estimated Life
SL107 ^{A, B}	2174	198	3.7 years

^ATMC Inventory is used across several test methods ^BSL107 has fully replaced oil 1006; Oil 1006 is no longer used as an EOEC Reference Fluid

Test Monitoring Center

https://www.astmtmc.org

ASTM Reference Testing Semi-Annual Report D7216 LDEOC

ASTM D 7216

Engine Oil Elastomer Compatibility (EOEC/HDEOC)

OHT CURRENT ELASTOMER BATCH CODES FOR ASTM D7216 AS OF: 3/9/2023

EOEC (PC 9)						
OHT PART NUMBER	BATCH CODE					
OHTPC9-NBR-1	29					
OHTPC9-ACM-2	31					
OHTPC9-FKM-1	30					
OHTPC9-MAC-1	23					

LDEOC (J2643)						
OHT PART NUMBER	BATCH CODE					
OHTJ2643-HNBR-1	30					
OHTJ2643-FKM-1	28					
OHTJ2643-ACM-2	25					
OHTJ2643-VMQ-1	40					
OHTJ2643-AEM-2	30					

A Program of ASTM International

LDEOC Test Activity*

Test Status		Ethylene Acrylate	Fluoroelast.	Nitrile	Polyacrylate	Silicone	Total
Acceptable Calibration Test	AC	66	63	68	76	75	348
Failed Calibration Test	OC	0	0	0	0	0	0
Operationally Invalid, by lab	LC	0	0	0	1	1	2
Operationally Invalid, by TMC	RC	0	0	0	0	0	0
Aborted	XC	0	0	0	0	0	0
Industry Information Runs	NI	0	0	0	10	0	10
Total		66	63	68	87	76	360

Calibrated Labs and Stands*

(change shown in parentheses)

LDEOC Failing Calibration (OC) Tests*

Validity	Cause	#
OC		
OC		
OC		
Total		0

*Invalid and aborted calibration tests

No Failing LDEOC Calibration Tests were reported this period.

LDEOC Lost Tests*

Validity	Cause	No. of Tests
LC	Sample Lost	1
LC	Heating Bath Failure	1
Total		2

*Invalid and aborted calibration tests

LDEOC Test Severity

Ethylene Acrylate (AEM1)

Parameter	Period Mean ∆/s	Status
Volume Change	-0.39	Mild
Points Hardness Change	0.14	Severe
Tensile Strength Change	-0.38	Mild

LDEOC Precision Estimates – Ethylene Acrylate

LDEOC Precision Estimates by Lab: AEM1

	Statistic	LTMS Lab					
Test Parameter		А	В	L	I	Р	G
	n=	23	5	3	10	3	22
	Mean	23.2	23.7	22.4	24.6	23.4	24.6
Volume	Pooled s	0.36	0.56	0.28	1.11	0.64	0.91
	Mean /s	-1.27	-0.63	-2.29	0.50	-1.10	0.52
	Mean	-13.1	-13.4	-11.7	-12.0	-12.3	-12.3
Hardness	Pooled s	0.97	0.55	1.15	1.05	1.53	1.25
	Mean /s	-0.44	-0.73	1.17	0.80	0.44	0.45
	Mean	-18.2	-18.9	-10.5	-19.9	-22.5	-18.2
Tensile Strength	Pooled s	3.25	2.43	5.05	4.34	5.01	4.99
	Mean /s	-0.34	-0.54	1.64	-0.79	-1.47	-0.34

LDEOC - ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA

A Program of ASTM International

REF ETH ACRYLATE VOLUME CHANGE FINAL

LDEOC - ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA

REF ETH ACRYLATE POINTS HARDNESS CHANGE FINAL

LDEOC - ETHYLENE ACRYLATE INDUSTRY OPERATIONALLY VALID DATA

REF ETH ACRYLATE TENSILE STRENGTH CHANGE FINAL

LDEOC Test Severity

Fluoroelastomer (FKM1)

Parameter	Period Mean ∆/s	Status
Volume Change	-0.75	Mild
Points Hardness Change	0.06	On-target
Tensile Strength Change	0.31	Severe

LDEOC Precision Estimates – Fluoroelastomer

*One 1006 reference oil result not included in this table

LDEOC Precision Estimates by Lab: FKM1

	Statistic	LTMS Lab					
Test Parameter		А	В	L	I	Р	G
	n=	20	6	3	10	3	21
	Mean	0.48	0.51	0.41	0.71	0.50	0.63
Volume	Pooled s	0.13	0.02	0.04	0.26	0.04	0.22
	Mean /s	-1.31	-1.13	-1.82	0.21	-1.18	-0.36
	Mean	4.65	4.17	4.00	4.50	5.00	3.43
Hardness	Pooled s	0.81	0.41	1.00	1.08	1.00	1.43
	Mean /s	0.54	0.07	-0.10	0.40	0.89	-0.66
	Mean	-58.6	-58.8	-58.9	-51.9	-57.0	-54.3
Tensile Strength	Pooled s	2.27	1.66	1.04	1.93	0.91	4.24
	Mean /s	-0.27	-0.31	-0.35	1.27	0.08	0.71

LDEOC - FLUOROELASTOMER INDUSTRY OPERATIONALLY VALID DATA

REF FLUOROELASTOMER VOLUME CHANGE FINAL

LDEOC - FLUOROELASTOMER INDUSTRY OPERATIONALLY VALID DATA

REF FLUORO POINTS HARDNESS CHANGE FINAL

LDEOC - FLUOROELASTOMER INDUSTRY OPERATIONALLY VALID DATA

REF FLUORO TENSILE STRENGTH CHANGE AVERAGE

LDEOC Test Severity

Nitrile (NBR1)

Parameter	Period Mean ∆/s	Status
Volume Change	1.55	Severe
Points Hardness Change	-0.42	Mild
Tensile Strength Change	-0.75	Mild

LDEOC Precision Estimates – Nitrile

LDEOC Precision Estimates by Lab: NBR1

Test Parameter	Statistic	LTMS Lab							
		V	А	В	L	I	Р	G	
	n=	2	23	5	3	10	3	22	
Volume	Mean	1.51	1.26	1.27	1.28	1.56	1.14	1.08	
	Pooled s	0	0.18	0.22	0.13	0.66	0.09	0.63	
	Mean /s	1.98	1.58	1.58	1.60	2.06	1.37	1.26	
Hardness	Mean	-2.00	-1.65	-1.80	-1.33	-1.10	-1.33	-1.59	
	Pooled s	0	0.57	0.45	0.58	0.74	0.58	0.59	
	Mean /s	-0.94	-0.54	-0.71	-0.18	0.92	-0.18	-0.47	
Tensile Strength	Mean	-0.70	0.64	0.52	-3.53	2.96	-0.17	5.59	
	Pooled s	8.77	4.63	3.02	0.21	3.63	1.85	8.60	
	Mean /s	-1.37	-1.09	-1.12	-1.95	-0.62	-1.26	-0.08	

LDEOC - NITRILE INDUSTRY OPERATIONALLY VALID DATA

REFERENCE NITRILE VOLUME CHANGE FINAL

LDEOC -- NITRILE INDUSTRY OPERATIONALLY VALID DATA

REF NITRILE POINTS HARDNESS CHANGE AVERAGE

LDEOC - NITRILE INDUSTRY OPERATIONALLY VALID DATA

REF NITRILE TENSILE STRENGTH CHANGE FINAL

LDEOC Test Severity

Polyacrylate (ACM1)

Parameter	Period Mean ∆/s	Status			
Volume Change	0.68	Severe			
Points Hardness Change	-0.76	Mild			
Tensile Strength Change	-0.64	Mild			

LDEOC Precision Estimates – Polyacrylate

LDEOC Precision Estimates by Lab: ACM1

Test Parameter	Statistic	LTMS Lab								
		E	V	А	В	L	I	Р	G	
	n=	2	2	23	7	3	12	3	24	
Volume	Mean	2.47	1.76	2.42	2.07	2.07	3.35	2.50	2.39	
	Pooled s	0.04	0.24	0.26	0.56	0.16	0.72	0.39	0.58	
	Mean /s	0.64	-0.44	0.56	0.03	0.02	1.97	0.69	0.51	
Hardness	Mean	-1.50	-2.50	-2.39	-2.86	-2.00	-0.50	0.33	-0.46	
	Pooled s	0.71	0.71	0.94	0.90	1.00	1.57	1.53	2.22	
	Mean /s	-0.84	-1.49	-1.41	-1.72	-1.16	-0.19	0.35	-0.16	
Tensile Strength	Mean	0.35	0.40	-2.68	-1.77	-2.60	-3.66	-4.53	-3.23	
	Pooled s	1.91	0.57	3.68	1.74	3.27	2.88	2.37	5.86	
	Mean /s	-0.26	-0.26	-0.62	-0.52	-0.61	-0.74	-0.84	-0.69	

LDEOC - POLYACRYLATE INDUSTRY OPERATIONALLY VALID DATA

REF POLYACRYLATE VOLUME CHANGE FINAL

LDEOC - POLYACRYLATE INDUSTRY OPERATIONALLY VALID DATA

REF POLYACRYLATE POINTS HARDNESS CHG FINAL

LDEOC - POLYACRYLATE INDUSTRY OPERATIONALLY VALID DATA

REF POLYACRYLATE TENSILE STRENGTH CHG FINAL

LDEOC Test Severity

Silicone (VMQ1)

Parameter	Period Mean ∆/s	Status			
Volume Change	0.58	Severe			
Points Hardness Change	-0.84	Mild			
Tensile Strength Change	0.73	Severe			

LDEOC Precision Estimates – Silicone

LDEOC Precision Estimates by Lab: VQM1

Test Parameter	Statistic	LTMS Lab							
		V	А	В	L	I	Р	G	
	n=	5	28	5	3	10	3	21	
Volume	Mean	33.2	33.3	32.7	30.0	30.6	33.2	37.3	
	Pooled s	0.43	1.32	0.78	0.50	1.49	0.09	3.15	
	Mean /s	0.35	0.37	0.19	-0.73	-0.55	0.37	1.75	
Hardness	Mean	-24.8	-24.4	-23.2	-18.7	-21.6	-23.7	-23.3	
	Pooled s	0.45	1.34	1.10	0.58	1.17	1.55	1.42	
	Mean /s	-1.53	-1.31	-0.74	1.48	0.04	-0.97	-0.79	
Tensile Strength	Mean	-29.9	-28.2	-27.7	-30.4	-34.2	-34.6	-34.1	
	Pooled s	8.09	2.80	2.01	3.11	4.04	3.96	4.92	
	Mean /s	1.03	1.51	1.64	0.91	-0.12	-0.23	-0.09	

LDEOC - SILICONE INDUSTRY OPERATIONALLY VALID DATA

REFERENCE SILICON VOLUME CHANGE FINAL

LDEOC - SILICONE INDUSTRY OPERATIONALLY VALID DATA

REFERENCE SILICON POINTS HARDNESS FINAL

LDEOC - SILICONE INDUSTRY OPERATIONALLY VALID DATA

REF SILICON TENSILE STRENGTH CHANGE FINAL

Information Letters & Technical Updates*

Test	Date	IL or Memo Number	Торіс
LDEOC	20230118	M23-002*	Elastomer SP Votes to Eliminate the use of 1006 Reference Oil

*Available from TMC Website

Reference Oil Inventory Estimated Life EOEC/LDEOC

Oil	TMC Inventory Oil Gallons		Estimated Life	
SL107 ^{A, B}	2174	198	3.7 years	

^ATMC Inventory is used across several test methods ^BSL107 has fully replaced oil 1006; Oil 1006 is no longer used as an EOEC Reference Fluid

D02.B0.07 TMC Monitored Tests

ASTM D 7528

ROBO

October 1, 2022 - March 31, 2023

A Program of ASTM Internationa

Calibrated Labs and Stands*

(change shown in parentheses)

Test Status	Validity Code	No. Tests
Acceptable Calibration Test	AC	87
Failed Calibration Test	OC	7
Operationally Invalidated by Lab	LC, XC	1
Operationally Invalidated After Initially Reported as Valid	RC	3
Total		98

Number of Labs Reporting Data: 5 Fail Rate of Operationally Valid Tests: 7.4%

Statistically Unacceptable Tests (OC)	No. Of Tests
Natural Log (MRV Viscosity) Mild	3
Natural Log (MRV Viscosity) Severe	4
Total	7

 Information Letter 21-1 was issued 3 November 2021 and added an option to use dilute nitrogen dioxide in air

D7528: ROBO Failed Tests by Lab

Failed Parameter		LT	Number of			
		BC	AQ	G	AM	Tests
Natural Log (MRV Viscosity) Severe	3	0	1	0	0	4
Natural Log (MRV Viscosity) Mild	2	0	1	0	0	3
Total	5	0	2	0	0	7

• Six different units from two different labs reported failing calibration tests

Operationally Invalid or Aborted Calibration Tests

Test Status	Cause	No. of Tests
Invalidated by Lab (LC)	Yield stress >35kPa (Not RO 434-3)	1
Invalidated by TMC (RC)	Yield stress >35kPa (Not RO 434-3)	3
Totals		4

Period Precision and Severity Estimates

Natural Log (MRV Viscosity)	n	df	Pooled s	Mean Δ/s
Targets Updated 202110211	80	77	0.1551	
10/1/18 through 3/31/19	100	96	0.2738	0.04
4/1/19 through 9/30/19	95	91	0.2492	-0.32
10/1/19 through 3/31/20	158	153	0.2723	-0.10
4/1/20 through 9/30/20	119	113	0.2264	-0.76
10/1/20 through 3/31/21	113	108	0.3188	-0.11
4/1/21 through 9/30/21	116	110	0.1992	-0.37
10/1/21 through 3/31/22	106	102	0.2103	-0.36
4/1/22 through 9/30/22	105	101	0.1868	-0.06
10/1/22 through 3/31/23	94	91	0.2000	0.11

¹Updated targets to include latest primary reference oils 434–3, 435–1 and 436

October 1, 2022 - March 31, 2023

Test Monitoring Center

NO ₂ Delivery Mechanism	Number of Total Tests	Number Of AC Tests	Pass Rate (%)	Number of Labs	Number of Rigs	LAB ID's
Dilute	40	40	100	2	14	G,AM
Liquid	54	47	87	4	16	A,AQ,BC,G
BOTH (Totals)	94	87	92.6	5*	29**	A, AM, AQ, BC, G

*One lab is conducting tests with both NO₂ delivery methods. **One unit reported one single failing test result and is not in calibration.

Precision, Performance (Mean Δ/s) by Lab and NO₂ Delivery Mechanism

NO ₂ Delivery		Reference Oil 434-3	Reference Oil 435-1	Reference Oil 436	TOTAL
Dilute	No. of Runs	11	22	7	40
	Mean	10.7338	11.1550	10.4058	10.9081
	Pooled s	0.1209	0.1536	0.0395	0.1327
	Mean Δ/s	-0.60	0.56	0.57	0.24
Liquid	No. of Runs	12	28	14	54
	Mean	10.8010	11.0102	10.3911	10.8032
Liquid	Pooled s	0.2131	0.2729	0.1217	0.2302
	Mean Δ/s	-0.12	-0.15	0.46	0.01
ροτμ	No. of Runs	23	50	21	94
	Mean	10.7688	11.0739	10.3960	10.8478
bom	Pooled s	0.1747	0.2375	0.1007	0.2000
	Mean Δ/s	-0.35	0.16	0.50	0.11

Period Performance (Mean Δ/s) by Lab and NO₂ Delivery Mechanism

NO ₂ Delivery Mechanism	LAB A (all L)	LAB AM (all D)	LAB AQ (all L)	LAB BC (all L)	LAB G (mix)
Diluto	n = 0	n = 7	n = 0	n = 0	n = 33
Dilute	N/A	0.39	N/A	N/A	0.21
Liquid	n = 35	n =0	n = 7	n = 4	n = 8
Liquiu	0.33	N/A	-0.53	-0.22	-0.76
ROTH	n = 35	n = 7	n =7	n = 4	n = 41
DOTT	0.33	0.39	-0.53	-0.22	0.02

Natural Log (MRV Viscosity)

Mean Δ/s

Natural Log (MRV Viscosity)

Mean Δ/s

- Precision (Pooled s) has been consistently right around 0.20 for the past four semesters and about 0.05 units higher than target (0.15).
- > Severity (Mean Δ/s) has moved to severe (+0.11) for the first time since April 2019
- CUSUM severity plot shows a second consecutive period of relatively 'flat' CUSUM after many periods of trending Mild.
- > Two labs did not report any runs this period

ROBO TEST INDUSTRY OPERATIONALLY VALID DATA

AGED OIL MRV APPARENT VISCOSITY

29APR23:18:16

ROBO TEST INDUSTRY OPERATIONALLY VALID DATA Last 200 Points ONLY AGED OIL MRV APPARENT VISCOSITY

ROBO TEST INDUSTRY OPERATIONALLY VALID DATA

AGED OIL MRV APPARENT VISCOSITY

ROBO TEST INDUSTRY OPERATIONALLY VALID DATA Last 750 Points ONLY AGED OIL MRV APPARENT VISCOSITY

29APR23:20:19

ROBO TEST INDUSTRY OPERATIONALLY VALID DATA NO2 OPT L AGED OIL MRV APPARENT VISCOSITY

29APR23:20:29

ROBO TEST INDUSTRY OPERATIONALLY VALID DATA NO2 Option D AGED OIL MRV APPARENT VISCOSITY

29APR23:20:32

Natural Log (MRV Viscosity)

Mean

* SINGLE OIL 434-2 RUN NOT INCLUDED IN THIS ANALYSIS

October 1, 2022 - March 31, 2023

Distribution of MRV

435-1 TMC REFERENCE OIL ID

434-3

F 87.36 Prob > F <.0001

→

Natural Log (MRV Viscosity)

* SINGLE OIL 434-2 RUN NOT INCLUDED IN THIS ANALYSIS

* SINGLE OIL 434-2 RUN NOT INCLUDED IN THIS ANALYSIS

TABLE of CONTENTS

>>> As of 3/31/2023

A Program of ASTM International

Oil	Year Rec'd By TMC [≁]	Tests	TMC Inventory, gallons	Gallons Shipped last 6 months	Estimated Life
VOLC12	2013	D5800	23.2	1.4	5+ years
VOLD12	2013	D5800	21.3	3.9	5+ years
VOLE12	2013	D5800	19.2	3.6	5+ years
VOLD18	2018	D5800QC	706	126	5+ years

^AThe integrity of TMC reference oils is confirmed annually by analytical QC testing of chemical and physical properties.

D6417, GI

Oil	Year Rec'd By TMC ^A	Tests	TMC Inventory, gallons	Gallons Shipped last 6 months	Estimated Life
52	1995	D6417	59.4	0.02	5+ years
55	1995	D6417	65.9	0.03	5+ years
58	1998	D6417, D6417QC, GI	111.0	0.3	5+ years
GIA17	2017	GI	6.2	0.1	5+ years
GIC18	2018	GI	8.7	0.5	5+ years
1009	2002	GI	35.6	0.1	5+ years

^A The integrity of TMC reference oils is confirmed annually by analytical QC testing of chemical and physical properties.

TEOST, MTEOS & ROBO

Oil	Year Rec'd By TMC [⊿]	Tests	TMC Inventory, gallons	Gallons Shipped last 6 months	Estimated Life
432	1998	MTEOS	101.9	0.1	5+ years
<mark>75–1</mark>	<mark>2016</mark>	TEOST	<mark>2.6</mark>	<mark>0.6</mark>	<mark>1.5 years</mark>
435-2 ^{<i>B</i>}	2010	TEOST	34.6	0.8	5+ years
434-3 ^{<i>B</i>}	2017	25.0	28.3	3.3	5+ years
435-1	2008	ROBO	339.3	7.2	5+ years
436 ^{<i>B</i>}	2014	ROBO	38.8	1.1	5+ years

^AThe integrity of TMC reference oils is confirmed annually by analytical QC testing of chemical and physical properties. ^BMulti-test oil; estimated aliquot reserved for bench testing.

D6082 & D874

Oil	Year Rec'd By TMC ^A	Tests	TMC Inventory, gallons	Gallons Shipped last 6 months	Estimated Life
FOAMB18	2018	D6082	78.3	1.9	5+ years
66	2002	D6082	71.9	1.5	5+ years
820-2	2001	D874	3.3	0.03	5+ years
90 ⁸	<mark>2005</mark>	<mark>D874/D874QC</mark>	<mark>6.9</mark>	<mark>2.0</mark>	<mark>2 years</mark>
91	2006	D874	3.10	0.03	5+ years

^A The integrity of TMC reference oils is confirmed annually by analytical QC testing of chemical and physical properties. ^BD874QC Samples (1L sizes) could quickly deplete Reference Oil 90 availability.

Reference Oil Inventory Estimated Life EOWT

Oil	TMC Inventory (gallons)	Quantity Shipped in last 6 months (gallons)	Lab Inventory (samples)	Estimated Life*
77-3	465.5	26.2	325	5+ years
79	240.2	26.3	327	3.7 years

*Based upon Sample Shipping Rate from past 6 months.

Reference Oil Inventory Estimated Life EOFT

Oil	TMC Inventory (gallons)	Quantity Shipped in last 6 months (gallons)	Lab Inventory (samples)	Estimated Life
79	240.2	31.4	128	2.5 years

Reference Oil Inventory Estimated Life EOEC/LDEOC

Oil	TMC Inventory Gallons	Gallons Shipped Past 12 Months	Estimated Life
SL107 ^{A, B}	2174	198	3.7 years

^ATMC Inventory is used across several test methods ^BSL107 has fully replaced oil 1006; Oil 1006 is no longer used as an EOEC Reference Fluid

Additional Information

A Program of ASTM international

Additional Information

- Available on the TMC's Website:
 - Lubricant Test Monitoring System (LTMS) Document
 - CUSUM Severity Plots
 - Reference Data, Period Statistics and Timelines
 - Information Letters and Technical Memos
 - Report Forms & Data Dictionaries
 - Online Store, and more...

www.astmtmc.org

A Program of ASTM International