Sequence VG Report Forms

Version VG VERSION 20040107 BETA

Conducted For

TSTSPON1 TSTSPON2

	V = Valid
	I = Invalid
LABVALID	N = Results cannot be interpreted as representative of oil performance
	(Non-Reference Oil) and shall not be used in determining an average test
	result using multiple test acceptance criteria.
TSTOIL	NR = Non-reference Oil Test
ISTOIL	RO = Reference Oil Test

Test Number							
Stand: STAND	Runs Between Calibration Tests: Total Runs on Stand: TOTSRUN						
Date Completed:	DTCOMP	DTCOMP End of Test Time: EOTTIME					
Oil Code: OIL	CODE						
Formulation/Stand Code: FORM							
Alternate Codes:	ALTCODE1	A	LTCODE2		ALTCODE3		

In my opinion this test OPVALID has been conducted in a valid manner in accordance with the VG Test Method D 6593 and the appropriate amendments through the Information Letter system. The remarks included in the report describe the anomalies associated with this test.

SUBMITTED BY	SUBLAB
	Testing Laboratory
<u>-</u>	SUBSIGIM
	Signature
	SUBNAME
	Typed Name
	SUBTITLE
	Title

Form 2

Sequence VG

Table of Contents

1.	Title / Validity Declaration Page	Form 1
2.	Table of Contents	Form 2
3.	Summary of Test Method	Form 3
4.	Test Result Summary	Form 4
5.	Test Result Summary	Form 5
6.	Operational Summary	Form 6
7.	Oil Addition Record & Blowby Rates	Form 7
8.	Analysis of Oil	Form 8
9.	Downtime Occurrences and Other Comments	Form 9
10.	ACC Conformance Statement	Form 10

Sequence VG Sludge and Varnish Deposit Test Form 3

Summary of Test Method

The Sequence VG engine sludge and varnish deposit test is a fired engine-dynamometer test which evaluates the ability of a lubricant to minimize the formation of sludge and varnish deposits. This test method is a cyclic test, with a total running duration of 216 hours.

The test engine is a Ford 4.6L, spark ignition, four stroke, eight cylinder "V" configuration engine. Features of this engine include dual overhead camshafts, a cross-flow fast burn cylinder head design, two valves per cylinder and electronic port fuel injection. A 90 minute break-in schedule is conducted prior to each test, since a new engine build is used for each test.

The Sequence VG test requires a new engine for each test. Each test is run for 216 hours, consisting of 54 cycles of 4 hours each. Each cycle consists of 3 stages. The stages of the test cycle are set at the following conditions:

Condition	Stage I	Stage II	Stage III
Duration, minutes	120	75	45
Engine Speed, r/min	1200	2900	700
Engine Power, kW	Record	Record	1.10 - 1.50
Manifold Abs Press, kPa (abs)	69	66	Record
Engine Oil In, °C	68	100	45
Engine Coolant Out, °C	57	85	45
Engine Coolant Flow, L/min	48	Record	Record
Engine Coolant Pressure, kPa (gauge)	70	70	70
RAC Coolant In, °C	29	85	29
Rocker Cover Flow, L/min	15	15	15
Intake Air, °C	30	30	30
Intake Air, Press, kPa (gauge)	0.05	0.05	0.05
Exhaust Gas Analysis, Lambda	1.0	1.0	0.75
Blowby Flow Rate Avg, L/min	Record	60 - 70	
Air/Fuel Ratio	Stoichmetric	Stoichmetric	11.5:1
Intake Air Humidity, g/kg	11.4	11.4	11.4
Exhaust Back Pressure, kPa abs	104	107	Record
Fuel Flow, kg/h	Record	Record	Record

Upon test completion, the engine is disassembled and rated for sludge and varnish. Average Engine Sludge and Average Engine Varnish are calculated.

Sequence VG Form 4 Test Result Summary Non-Reference & Reference Oil Tests

Laboratory: LAB	Stand: STAND	Stand Runs: STRUN	Total Runs on Stand: TOTSRUN
Oilcode: OILCODE			
Formulation/Stand Code	e: FORM		

Date Started: DTSTRT	Time Started: STRTTIME	SAE Viscosity: SAEVISC
Date Complete: DTCOMP	Fime Complete: EOTTIME	Lab Engine Number: ENGINE
Test Length: TESTLEN		Fuel Batch: FUELBTID
Industry Oil Code: IND		Nominal Piston Oversize: NOMPISO

Critical Parameters							
	Average Engine Sludge, merits	Rocker Cover Sludge, merits	Average Engine Varnish, merits	Average Piston Skirt Varnish, merits	Oil Screen Sludge, % Area	Number of Hot Stuck Rings	
Original Result	AES	RACS	AEVB	APV	OSCRNSLG	NHSCMPRG	
Transformed Result					TRANOSCR		
Industry Correction Factor	AESCF	RACSCF	AEVBCF	APVCF	TOSCRCF	NHSRCF	
Corrected Transformed Result					TOSCRCOR		
Severity Adjustment	AESSA	RACSSA	AEVBSA	APVSA	TOSCRSA	NHSRSA	
Final Transformed Result					TOSCRFNL		
Final Original Unit Result	AESFNL	RACSFNL	AEVBFNL	APVFNL	OSCRFNL	NHSRFNL	

Clogging Inform	ation	Additional Information	
Oil Screen Debris, % Area	OSCRNDEB	Number of Cold Stuck Rings	NCSCMPRG
Oil Ring Clogging, % Area	OILRING	Average Blowby Stage II, L/min	ACBLWRT2
PCV Valve @ 25 kPa, %	PCV25	Oil Consumption, grams	TOILCONS
PCV Valve @ 60 kPa, %	PCV60		

Last Reference Oil Test Calibrating Stand Information – Fill Out For Non-reference Oil Tests Only							
Stand: RSTAND			Total Runs on T	est Stand RTOT	SRU		
Oilcode: ROILCODE							
Industry Oil Code: RIND	Engine Nun	ber: RENGINE	SAE Viscosit	y: RSAEVISC Da	te C	ompleted:	RDTCOMP
Test Length: RTESTLE Fuel	Batch: RFUI	ELBID	Calibration Exp	iration Date: RI	DTC	ALEX	
Clogging	Information	1		Additional In	forn	nation	
Oil Screen Debris, % Area	ROSC	RDEB	Number of Cold	l Stuck Rings		RCSCM	PRG
Oil Ring Clogging, % Area	ROILI	RING	Average Blowby Stage II, L/min			RACBLWR2	
PCV Valve @ 25 kPa, %	RPCV	25	Oil Consumption, grams			RTOILC	ON
PCV Valve @ 60 kPa, %	RPCV	60					
	Average	Average	Average	Average	Oi	1 Screen	Number of
	Engine	Rocker	Engine	Piston Skirt	S	Sludge,	Hot Stuck
	Sludge,	Cover	Varnish,	Varnish,	9	∕₀ Area	Rings
	merits	Sludge,	merits	merits			
		merits					
Final Original Unit Result	RAESFNL	RRACSFNL	RAEVBFNL	RAPVFNL	ROS	SCRSLG	RHSCMPRC

Sequence VG Form 5 Test Result Summary Non-Reference & Reference Oil Tests

Laboratory: LAB	Stand: STAND	Stand Runs: STRUN	Total Runs on Stand:	TOTSRUN
Oilcode: OILCODE				
Formulation/Stand Code	e: FORM			

Date Completed:	DTCOMP		Time Completed:	EOTTIME
Camshaft Serial Nu	mbers	Cam, Left:	CAMSNL	Cam, Right: CAMSNR
Cylinder Head Seria	al Numbers	Head, Left:	HEADSNL	Head, Right: HEADSNR
Number of Runs	Block: BLOCKRUN	Left Head:	HEADRUNL	Right Head: HEADRUNR

Sludge Deposits	
Area	Merit
Rocker Arm Cover, Left	RACLSRT
Rocker Arm Cover, Right	RACRSRT
Camshaft Baffle, Left	CAMBLSRT
Camshaft Baffle, Right	CAMBRSRT
Timing Chain Cover	TCCSRT
Oil Pan Baffle	OILPBSRT
Oil Pan	OILPNSRT
Valve Deck Area, Left	VLVDLSRT
Valve Deck Area, Right	VLVDRSRT
Average Engine Sludge	AES

Wear Measurements						
Ring Wear	Units	Value				
Follower Pin Wear, cyl #8, Intake	μm	CFPIN8I				
Follower Pin Wear, cyl #8, Exhaust.	μm	CFPIN8E				
Ring Gap Increase, cyl #1 & #8, Max	μm	MXRGINC				
Ring Gap Increase, cyl #1 & #8, Avg	μm	ARGINC				

Varnish Deposits							
Area	Merit						
Piston Skirt, Thrust	APV						
Rocker Arm Cover, Left	CAMBLVRT						
Rocker Arm Cover, Right	CAMBRVRT						
Average Engine Varnish	AEVB						

Piston Varnish Deposits, Thrust Side						
Piston Number	Merit					
1	PSVTH1					
2	PSVTH2					
3	PSVTH3					
4	PSVTH4					
5	PSVTH5					
6	PSVTH6					
7	PSVTH7					
8	PSVTH8					
Average	APV					

Sequence VG Form 6 Operational Summary

Total Runs on Stand: TOTSRUN Stand Runs: STRUN Stand: STAND Laboratory: LAB Oilcode: OILCODE Oilcode:

Formulation/Stand Code: FORM

													1
			ō	EOT		Target			Average				Over/Under
	Parameter	Units	Fhreshold	ΙÒ	Stage 1	Stage 2	Stage 3	Stage 1	Stage 2	Stage 3	Sample	BQD	Range
	Speed	r/min	0.000	QRPM	1200	2900	002	ARPM1	ARPM2	ARPM3	NRPM	BRPM	ORPM
SLS	Manifold Abs Press	kPa	0000	MANAE	69	99	Record	1MANABP	Record AMANABP: AMANABP: AMANABP:	4MANABP?	NMAP	BMAP	OMAP
919	Engine Oil, In	\mathcal{D}_{o}	0.000	ENGOL	89	100	45	AENGOIN1	AENGOINI AENGOIN2 AENGOIN3	AENGOIN3	NEOIN	BEOIN	OEOIN
me	Engine Coolant, Out	\mathcal{D}_{\circ}	0.000	COLOU	57	85	45	ACOLOUTI	ACOLOUTI ACOLOUT2 ACOLOUT3 NCOUT	ACOLOUT3	NCOUT	BCOUT	OCOUT
ar	Engine Coolant Flow	L/min	0000	COLFR	48	Record	Record	ACOLFRT1	ACOLFRT1 ACOLFRT2 ACOLFRT3 NCFRT	ACOLFRT3	NCFRT	BCFRT	OCFRT
d I	Engine Coolant Pressure	kPa	0000	COLPR	20	70	0/	ACOLPRE1	ACOLPRE1 ACOLPRE2 ACOLPRE3 NCPRE	ACOLPRE3	NCPRE	BCPRE	OCPRE
Jec	RAC Coolant, In	သွ	0.000	RACCT	29	85	29	ARACCTP1	ARACCTP1 ARACCTP2 ARACCTP3 NRACC	ARACCTP3	NRACC	BRACC	ORACC
rol	RAC Flow	L/min	0.000	RACCF	15	15	15	ARACCFRI	ARACCFR1 ARACCFR2 ARACCFR3 NRACF	ARACCFR3	NRACF	BRACF	ORACF
1u	Intake Air	\mathcal{D}_{o}	0.000	JINAIR	30	30	0ε	AINAIRT1	AINAIRT1 AINAIRT2 AINAIRT3		NINAT	BINAT	OINAT
Co	Intake Air Pressure	kPa	0.000	JINAIR	0.05	0.05	50.0	AINAIRP1	AINAIRP1 AINAIRP2 AINAIRP3	AINAIRP3	NINAP	BINAP	OINAP
	Intake Air Humidity	g/kg	0.000	AIRHU	11.4	11.4	11.4	AAIRHUM1	AAIRHUM1 AAIRHUM2 AAIRHUM3 NAHUM	AAIRHUM3	NAHUM	BAHUM	OAHUM
	Exhaust Backpressure	kPa	0000	EXBKP	104	107	Record	AEXBKPR1	AEXBKPR1 AEXBKPR2 AEXBKPR3	AEXBKPR3	NEXBP	BEXBP	OEXBP
	Parameter		Units		S	Specifications	SI						
	Fuel Flow		kg/h		Record	Record	Record	AFUELRT1	Record AFUELRT1 AFUELRT2 AFUELRT3	AFUELRT3			
	Blowby		L/min		Record	02-09			ACBLWRT2				
- •	Power		kW		Record	Record	1.3 ± 0.2		APOWER1 APOWER2	APOWER3			
-	Exhaust Gas												
uo	Lambda, Left Bank		AFR		1.0	1.0	0.75	LLAMBDAI	LLAMBDA JLAMBDA2 JLAMBDA3	LAMBDAS			
N	Lambda, Right Bank		AFR		1.0	1.0	0.75	3LAMBDA1	3LAMBDA 3LAMBDA2 3LAMBDA3	ALAMBDA?			

Sequence VG Form 7 Oil Addition Record & Blowby Rates Non-Reference & Reference Oil Tests

Laboratory: LAB	Stand:	STAND	Stand Runs: STRUN	Total Runs on Stand:	TOTSRUN
Oilcode: OILCODE					
Formulation/Stand Code	e: FORM				

Cycle	Test Hour	Oil Added, g	Oil Consumed, g
CYC_R006	TSC_R006	OILAR006	OILCR006
CYC_R012	TSC_R012	OILAR012	OILCR012
CYC_R018	TSC_R018	OILAR018	OILCR018
CYC_R024	TSC_R024	OILAR024	OILCR024
CYC_R030	TSC_R030	OILAR030	OILCR030
CYC_R036	TSC_R036	OILAR036	OILCR036
CYC_R042	TSC_R042	OILAR042	OILCR042
CYC_R048	TSC_R048	OILAR048	OILCR048
CYC_R054	TSC_R054		OILCR054
	Total, g	TOILADD	TOILCONS

Stage II	
Test Hours	Blowby, L/min
TSBBRK	BLBYBRK
TSB_H023	BLBYH023
TSB_H047	BLBYH047
TSB_H071	BLBYH071
TSB_H095	BLBYH095
TSB_H119	BLBYH119
TSB_H143	BLBYH143
TSB_H167	BLBYH167
TSB_H191	BLBYH191
TSB_H215	BLBYH215
Maximum	XCBLWRT2
Minimum	MCBLWRT2
Average Blowby, Hours 23 - 119	ABLW2120
Average	ACBLWRT2

Sequence VG Form 8 Analysis of Oil

Laboratory: LAB Stand: STAND Stand Runs: STRUN Total Runs on Stand: TOTSRUN
Oilcode: OILCODE
Formulation/Stand Code: FORM

Test Hours	Ag, ppm	Al, ppm	Cr, ppm	Cu, ppm	Fe, ppm	Pb, ppm	Si, ppm	Sn, ppm	Fuel Dilution by GC, Wt.% D3525	Pentane Insolubles, Wt.% D893B ^A	TBN D4739 ^A	Vis. @ 40°C, cSt D445	Vis. @ 100°C, cSt D445 ^A
TSTNEW	AGWM	ALWM	CRWM	CUWM	FEWMN	PBWMN	SIWMN	SNWM			TBNNE'	V40NEV	V100NEW
TST_H024	AGWM	IALWMI	CRWMI	CUWMI	FEWMI	PBWMI	SIWMH	SNWMF	FUELH(TBN_H	V40_H0	V100H024
TST_H048	AGWMI	ALWM	CRWMI	CUWMI	FEWME	PBWMI	SIWMH	SNWMI	FUELH(PEN_H048	TBN_H	V40_H0	V100H048
TST_H072	AGWMI	ALWMI	CRWMI	CUWMI	FEWME	PBWMF	SIWMH	SNWMF	FUELH(TBN_H	V40_H0	V100H072
TST_H096	AGWMI	ALWMI	CRWMI	CUWMI	FEWMI	PBWMI	SIWMH	SNWMI	FUELH(PEN_H096	TBN_H	V40_H0	V100H096
TST_H120	AGWMI	ALWM	CRWMI	CUWMI	FEWMI	PBWMI	SIWMH	SNWMF	FUELH1		TBN_H	V40_H1	V100H120
TST_H144	AGWMI	ALWMI	CRWMI	CUWMI	FEWME	PBWMI	SIWMH	SNWMI	FUELH1	PEN_H144	TBN_H	V40_H1	V100H144
TST_H168	AGWMI	ALWMI	CRWMI	CUWMI	FEWME	PBWMI	SIWMH	SNWMI	FUELH1		TBN_H	V40_H1	V100H168
TST_H192	AGWMI	ALWM	CRWMI	CUWMI	FEWMI	PBWMF	SIWMH	SNWMI	FUELH1	PEN_H192	TBN_H	V40_H1	V100H192
TST_H216	AGWMI	ALWM	CRWMI	CUWMI	FEWME	PBWMI	SIWMH	SNWMI	FUELH2	PEN_H216	TBN_H2	V40_H2	V100H216

^A Analyses not required by Test Method

Sequence VG Form 9 Downtime Occurrences and Other Comments

Laboratory: LAB	Stand: STAND	Stand Runs: STRUN	Total Runs on Stand:	TOTSRUN
Oilcode: OILCODE				
Formulation/Stand Code	e: FORM			

Number of	Downtime O	ccurrences		DWNOC.		
Test						
Hours	Date	Downtime				Reasons
DOWNR001	DDATR001	DTIMR001	DREAR001			
DOWNR002	DDATR002	DTIMR002	DREAR002			
DOWNR003	DDATR003	DTIMR003	DREAR003			
DOWNR004	DDATR004	DTIMR004	DREAR004			
DOWNR005	DDATR005	DTIMR005	DREAR005			
DOWNR006	DDATR006	DTIMR006	DREAR006			
DOWNR007	DDATR007	DTIMR007	DREAR007			
DOWNR008	DDATR008	DTIMR008	DREAR008			
DOWNR009	DDATR009	DTIMR009	DREAR009			
DOWNR010	DDATR010	DTIMR010	DREAR010			
DOWNR011	DDATR011	DTIMR011	DREAR011			
DOWNR012	DDATR012	DTIMR012	DREAR012			
DOWNR013	DDATR013	DTIMR013	DREAR013			
DOWNR014	DDATR014	DTIMR014	DREAR014			
DOWNR015	DDATR015	DTIMR015	DREAR015			
		TOTLDOW			Tot	al Downtime

Other Comments		
Number of Comment Lines	TOTCOM	
OCOMR001		
OCOMR002		
OCOMR003		
OCOMR004		
OCOMR005		
OCOMR006		
OCOMR007		
OCOMR008		
OCOMR009		
OCOMR010		
OCOMR011		
OCOMR012		
OCOMR013		
OCOMR014		
OCOMR015		

Sequence VG

Form 9A Downtime Occurrences and Other Comments

Laboratory: LAB	Stand:	STAND	Stand Runs: STRUN	Total Runs on Stand:	TOTSRUN
Oilcode: OILCODE					
Formulation/Stand Code	e: FORM				

Number of Downtime Occurrences			DWNOCR
Test			
Hours	Date	Downtime	Reasons
DOWNR016	DDATR016	DTIMR016	DREAR016
DOWNR017	DDATR017	DTIMR017	DREAR017
DOWNR018	DDATR018	DTIMR018	DREAR018
DOWNR019	DDATR019	DTIMR019	DREAR019
DOWNR020		DTIMR020	DREAR020
DOWNR021	DDATR021	DTIMR021	DREAR021
DOWNR022	DDATR022	DTIMR022	DREAR022
DOWNR023	DDATR023	DTIMR023	DREAR023
DOWNR024	DDATR024	DTIMR024	DREAR024
DOWNR025	DDATR025	DTIMR025	DREAR025
DOWNR026	DDATR026	DTIMR026	DREAR026
DOWNR027	DDATR027	DTIMR027	DREAR027
DOWNR028	DDATR028	DTIMR028	DREAR028
- 0 TT D TD 0 - 1		DTIMR029	DREAR029
DOWNR030	DDATR030	DTIMR030	DREAR030
		TOTLDOW	Total Downtime

Other Comments		
Number of Comment Lines	TOTCOM	
OCOMR016		
OCOMR017		
OCOMR018		
OCOMR019		
OCOMR020		
OCOMR021		
OCOMR022		
OCOMR023		
OCOMR024		
OCOMR025		
OCOMR026		
OCOMR027		
OCOMR028		
OCOMR029		
OCOMR030		

Sequence VG Form 9B Downtime Occurrences and Other Comments

Laboratory: LAB	Stand:	STAND	Stand Runs: STRUN	Total Runs on Stand:	TOTSRUN
Oilcode: OILCODE					
Formulation/Stand Code	e: FORM				

Number of	f Downtime Oc	currences	DWNOCR
Test			
Hours	Date	Downtime	Reasons
DOWNR03	DDATR031	DTIMR031	DREAR031
DOWNR03:	DDATR032	DTIMR032	DREAR032
DOWNR03:	DDATR033	DTIMR033	DREAR033
DOWNR03	DDATR034	DTIMR034	DREAR034
DOWNR03:	DDATR035	DTIMR035	DREAR035
DOWNR03	DDATR036	DTIMR036	DREAR036
DOWNR03	DDATR037	DTIMR037	DREAR037
DOWNR03	DDATR038	DTIMR038	DREAR038
DOWNR03	DDATR039	DTIMR039	DREAR039
DOWNR04	DDATR040	DTIMR040	DREAR040
DOWNR04	DDATR041	DTIMR041	DREAR041
DOWNR04	DDATR042	DTIMR042	DREAR042
DOWNR04	DDATR043	DTIMR043	DREAR043
DOWNR04	DDATR044	DTIMR044	DREAR044
DOWNR04	DDATR045	DTIMR045	DREAR045
		TOTLDOW	Total Downtime

Other Comments		
Number of Comment Lines	TOTCOM	
OCOMR031		
OCOMR032		
OCOMR033		
OCOMR034		
OCOMR035		
OCOMR036		
OCOMR037		
OCOMR038		
OCOMR039		
OCOMR040		
OCOMR041		
OCOMR042		
OCOMR043		
OCOMR044	· · · · · · · · · · · · · · · · · · ·	
OCOMR045		

Sequence VG Form 10

American Chemistry Council Code Of Practice Test Laboratory Conformance Statement

Test Laboratory	SUBLAB				
Test Sponsor	TSTSPON1				
Formulation / Stand Code	FORM				
Test Number	TESTNUM				
Start Date DTSTRT	Start Time STRTTIME	Time Zone TZONE			

- No. 1 All requirements of the ACC Code of Practice for which the test laboratory is responsible were met in the conduct of this test. Yes 'ESRQME' NovORQMET*
- No. 2 The laboratory ran this test for the full duration following all procedural requirements; and all operational validity requirements of the latest version of the applicable test procedure (ASTM or other), including all updates issued by the organization responsible for the test, were met.

Yes YESFULL No NOFULL *

If the response to this Declaration is "No", does the test engineer consider the deviations from operational validity requirements that occurred to be beyond the control of the laboratory? YesYESNODEC* No NONODEC

No 3. A deviation occurred for one of the test parameters identified by the organization responsible for the test as being a special case. Yes YESDEV* No NODEV (This currently applies only to specific deviations identified in the ASTM Information Letter System)

INCLUDE	Operational review of this test indicates that the results should be included in the Multiple Test Acceptance Criteria calculations.
DONOTINC	*Operational review of this test indicates that the results should not be included in the Multiple Test Acceptance Criteria calculations.

Note: Supporting comments are required for all responses identified with an asterisk.

Comments				
ACCCOMM1				
ACCCOMM2				
ACCCOMM3				
ACCCOMM4				

SUBSIGIM	SUBDATE	
Signature	Date	
SUBNAME	SUBTITLE	
Typed Name	Title	