Sequence IVA Valve Train Wear Evaluation Final Report Cover Sheet

Form 1

Version:

Conducted For

V = Valid
I = Invalid

NR = Non-reference oil
RO = Reference oil

Test Number			
Test StandNumber of Runs on Stand Since Last Calibration Test		Total Runs on Stand	
Lab Engine Number	Total Runs on Cylinder Head		
Lab Head Number	Lab Cam Number		
Date Completed	Completion Time		
Oil Code Fuel Batch			
Formulation/Stand Co	ode		
Alternate Codes:			

In my opinion this test been conducted in a valid manner in accordance with the ASTM Test Method D 6891 and the appropriate amendments through the Information Letter System. The remarks included in this report describe anomalies associated with this test.

Submitted By:

Testing Laboratory

Signature

Typed Name

Title

Form 2

Table of Contents

1.	Title / Validity Declaration Page	Form 1
2.	Table of Contents	Form 2
3.	Summary of Test Method	Form 3
4.	Results Summary	Form 4
5.	Camshaft Lobe Wear Table	Form 5
6.	Operational Data Summary	Form 6
7.	Used Oil Analysis	Form 7
8.	Engine Build Measurements	Form 8
9.	Special Maintenance Record	Form 9
10.	Cycle 5 Stage 2 to 1 Transition: Oil Gallery Temperature	Form 10
11.	Cycle 5 Stage 1 to 2 Transition: Oil Gallery Temperature	Form 11
12.	Cycle 5 Stage 2 to 1 Transition: Coolant Out Temperature	Form 12
13.	Cycle 5 Stage 1 to 2 Transition: Coolant Out Temperature	Form 13
14.	Cycle 5 Stage 2 to 1 Transition: Engine Torque	Form 14
15.	Cycle 5 Stage 1 to 2 Transition: Engine Torque	Form 15
16.	Cycle 5 Stage 2 to 1 Transition: Engine Speed	Form 16
17.	Cycle 5 Stage 1 to 2 Transition: Engine Speed	Form 17
18.	ACC Conformance Statement	Form 18

Form 3

Summary of Test Method

The Sequence IVA engine valve train wear test is a fired engine-dynamometer lubricant test which evaluates the ability of a test lubricant to reduce camshaft lobe wear. The test method is a low temperature cyclic test, with a total running duration of 100 hours.

A 1994 Nissan model KA24E water-cooled, 4 cycle, in-line cylinder, 2.4L engine is used as the test apparatus. The engine incorporates a single overhead cam (SOHC), three valves per cylinder (2 intake; 1 exhaust), and sliding follower valve train design. An engine short block is utilized for 16 tests; a cylinder head assembly for 8 tests; and the critical test parts (camshaft, rocker arms, rocker shafts) are replaced every test. A 95-minute break-in schedule is conducted whenever the long block or cylinder head is replaced.

The Sequence IVA test is a flush and run type of lubricant test. Each individual test consists of two 20-minute flushes, followed by the 100-hour cyclic test. The cyclic test is comprised of 100 hourly cycles. Each cycle consists of two stages. The idle speed Stage 1 duration is 50 minutes; the 1500 r/min stage 2 operates for 10 minutes. The stages of the test cycle are set at the following conditions:

Parameter	Units	Stage 1	Stage 2
Duration	Min	50	10
Engine Speed	r/min	800	1500
Engine Torque	N∙m	25	
Coolant Out Temperature	°C	50	55
Oil Cylinder Head Temperature	°C	49	59
Intake Air Temperature	°C	32	
Intake Air Pressure	КРа	0.050	
Intake Air Humidity	G/kg	11.5	
Exhaust Pressure	kPa absolute	103.5	
Coolant Flow	L/min	30	
Fresh Air Flow	SL/min	10	

Upon test completion, the camshaft is removed from the engine and measured for individual lobe wear at seven prescribed locations (nose; 14 degrees before and after the nose; 10 degrees before and after the nose; 4 degrees before and after the nose). For each lobe, the seven locations are summed to determine the lobe wear. Then the twelve lobes are averaged to compute the final test result.

Fo	orm 4
Results	Summary

ites units > uniting		
Laboratory:	Test Number:	
Oil Code:		
Formulation/Stand Code:		

Laboratory Oil		
Fuel Batch		SAE Grade
Date Started	Date Completed	Test Length
Time Started	Time Completed	TMC Oil Code ^A
Lab Engine		
Cam Lot Number	Head Lot	Rocker Arm Lot

Average Camshaft Wear

Original Unit Re	esult, μm	
Transformed Result		
Industry Correct	tion Factor	
Corrected Trans	sformed Result	
Severity Adjustr	ment (non-reference oil tests only)	
Final Transform	ned Result	
Final Original U	Jnit Result, µm	
Additional Camshaft Lobe Wear Measurements		
Intake Lobe	Maximum, µm	
IIItake Love	Average, µm	
Exhaust Lobe	Maximum, µm	
Exhaust Lobe	Average, µm	
Nose	Maximum, µm	
11050	Average, µm	

Additional Information		
Total Oil Consumption @ EOT, g		
Fuel Dilution @ EOT, %		
Fuel Consumption @ EOT, kg		
Fe by ICP @ EOT, ppm		
Corrected Blowby, L/min @ hour 5		
Corrected Blowby, L/min @ hour 100		

Most Recent Reference Oil Test History ^B		
Test Number		
Oilcode		
Date	TMC Oil Code	
Final Average (Camshaft Wear, µm	

^A Reference Oil Tests Only ^B Non-reference Oil Tests Only

Form 5 Camshaft Lobe Wear

Laboratory:	Test Number:
Oil Code:	
Formulation/Stand Code:	

7-point Measurement Method

Position	Cylinder	Lobe	14° BTC	10° BTC	4° BTC	0° (Nose)	4° ATC	10° ATC	14° ATC	Lobe
1 USITION	Cymruci	Number	Wear, µm	Wear, µm	Wear, µm	Wear, µm	Wear, µm	Wear, µm	Wear, µm	Wear, µm
	1	1								
	1	3								
	2	4								
	2	6								
Intake	3	7								
Intake	5	9								
	4	10								
		12								
	Maximum									
	Ave	rage								
	1	2								
	2	5								
Exhaust	3	8								
Exhaust	4	11								
	Maxi	mum								
	Average									
Ov	erall Maxim	um								
0	verall Avera	ge								

Form 6

Operational Summary

Laboratory:	Test Number:				
Oil Code:					
Formulation/Stand Code:					

	Parameter	Units	QI Limit	EOT QI		Targ	get	Average	Samples ^A	BQD ^B	Over/Under Range ^C
STO	Speed	r/min	0.000			800	1500				
ameters	Torque	N∙m	0.000			25.	0				
an	Coolant Out Temperature	°C	0.000		:	50.0	55.0				
Pai	Humidity	g/kg	0.000			11.					
ed	Intake Air Temperature	°C	0.000			32	2				
colle	Intake Air Pressure	kPa	0.000			0.0					
ntı	Exhaust Pressure, absolute	kPa	0.000			103					
C	Engine Coolant Flow	L/min	0.000			30					
	Oil Cylinder Head Temperature	°C	0.000			49.0	59.0				
	Rocker Cover Fresh Air Flow	SL/min	0.000			10.	0				
	Parameter	Units		Typical Val				Average			
	Oil Sump Temperature	°C		9 – 54		57 - 6					
	Oil Gallery Temperature	°C		5 - 50.5	5	58.5 – 6					
\$	Coolant In Temperature	°C	44	4-46		49 – 5	0				
meter	Exhaust Gas Temperature	°C	306	5-332	4	414 – 4					
me	Fuel Rail Temperature	°C	15	5-30		15 – 3	0				
ara	Oil Gallery Pressure	°C	99.5	- 145.5	21	10.5 - 23	80.5				
I P:	Oil Cylinder Head Pressure	kPa) – 60		50 - 9					
rolled	Fuel Pressure	kPa		0-380		230 - 32					
tro]	Manifold Vacuum	kPa		7 – 59.9		6 3.8 – 6					
conti	Air-to-Fuel Ratio	-		– 14.7		14.1 – 1 4					
	Crankcase Pressure	kPa		0.4		-0.1(
No	Fuel Flow	kg/h		2 – 1.4		2.0 - 2.0					
	Ignition Timing	°BTDC	-	-11		22 - 2			_		
	Ambient Temperature	°C	20) – 45		20 - 43	5				
	Rocker Cover Gas Temperature	°C	47	7 – 49		52 – 5	5				
Ļ	Rocker Cover Coolant Flow	L/min	3.0) – 4.5		3.0 - 4	.5				

^A Total number of data points taken as determined from test length and sampling rate ^B Number of Bad Quality Data points not used in the calculation of statistical measures ^C Number of points clipped by over or under range limits of the statistical measures

Form 7 Used Oil Analysis

Laboratory:	Test Number:				
Oil Code:					
Formulation/Stand Code:					

Chemical Analysis of 0, 25, 50, 75, & 100-hour Used Engine Oil Samples

ASTM Method	Analysis Description	Units			
D445	Kinematic Viscosity @ 40°C	cSt			
D3525-M	Fuel Dilution, Gasoline	%			
D5185 (ICP)	Iron by ICP	ppm			
D5185 (ICP)	Copper by ICP	ppm			

Form 8 **Camshaft Bore/Journal Measurements**

Laboratory:	Test Number:						
Oil Code:							
Formulation/Stand Code:							

Camshaft Bearing Bore Diameter (mm)

Bore Gauge	e Set: 33.000m	m		8	D	iameter (Standa	ard): 33.000 – 3	33.025mm
Bore	2	K	V	V	Y		Maximum Run-out	
Number	F	R	F	R	F	R	F	R
1								
2								
3								
4								
5								

Camshaft Bearing Journal Diameter (mm)

Diameter (S	Standard): 32.9	35 – 32.955mn	n	0		Cle	arance (Limit):	0.120mm
Bore	,	V	I	Н		Run-out		nce @ V
Number	F	R	F	R	F	R	F	R
1								
2								
3								
4								
5								

Note: Calculate camshaft bearing clearance @ vertical bore diameter

Camshaft End Play, mm	End Play (Limit): 0.20mm

Camshaft Sprocket Run-out, mm Run-out (Limit): 0.12mm

Camshaft Run-out (bend), mm Run-out (Limit): 0.02mm

Cylinder Compression, kPa

Cylinder Number	1	2	3	4
Before Test				

Form 9

Special Maintenance Record

Laboratory:	Test Number:
Oil Code:	
Formulation/Stand Code:	

Number of	Downtime (Occurrences	S S
Test Hours	Date	Down Time	Reasons
			Total Downtime

Other Comments		
Number of Comment Lines		

Form 9A Special Maintenance Record

Laboratory:	Test Number:
Oil Code:	
Formulation/Stand Code:	

Number of Downtime Occurrences					
Test Hours	Date	Down Time		Reasons	
			Total Downtime		

Other Comments		
Number of Comment Lines		

Form 9B Special Maintenance Record

Laboratory:	Test Number:
Oil Code:	
Formulation/Stand Code:	

Number of	Downtime O	ccurrences	5			
Test Hours	Date	Down Time			Reasons	
			Total D	owntime		

Form 10 Cycle 5 Stage 2 to 1 Transition: Oil Cylinder Head Temperature

Laboratory:	Test Number:
Oil Code:	
Formulation/Stand Code:	

Form 11

Cycle 5 Stage 1 to 2 Transition: Oil Cylinder Head Temperature

Laboratory:	Test Number:
Oil Code:	
Formulation/Stand Code:	

Form 12

Cycle 5 Stage 2 to 1 Transition: Coolant Out Temperature

Laboratory:	Test Number:
Oil Code:	
Formulation/Stand Code:	

Form 13
Cycle 5 Stage 1 to 2 Transition: Coolant Out Temperature

Laboratory:	Test Number:
Oil Code:	
Formulation/Stand Code:	

Form 14 Cycle 5 Stage 2 to 1 Transition: Engine Torque

	Laboratory:	Test Number:
	Oil Code:	
Formulation/Stand Code:		

Form 15 Cycle 5 Stage 1 to 2 Transition: Engine Torque

	Laboratory:	Test Number:
	Oil Code:	
Formulation/Stand Code:		

Form 16 Cycle 5 Stage 2 to 1 Transition: Engine Speed

Laboratory:	Test Number:
Oil Code:	
Formulation/Stand Code:	

Form 17
Cycle 5 Stage 1 to 2 Transition: Engine Speed

Laboratory:	Test Number:
Oil Code:	
Formulation/Stand Code:	

Form 18 American Chemistry Council Code of Practice Test Laboratory Conformance Statement

Test Laboratory		
Test Sponsor		
Formulation / Stand Code		
Test Number		
Start Date	Start Time	Time Zone

Declarations

- No. 1 All requirements of the ACC Code of Practice for which the test laboratory is responsible were met in the conduct of this test. Yes _____ No____*
- No. 2 The laboratory ran this test for the full duration following all procedural requirements; and all operational validity requirements of the latest version of the applicable test procedure (ASTM or other), including all updates issued by the organization responsible for the test, were met. Yes _____ No_____*

If the response to this Declaration is "No", does the test engineer consider the deviations fro	m
operational validity requirements that occurred to be beyond the control of the laboratory?	Yes
* No	

No 3. A deviation occurred for one of the test parameters identified by the organization responsible for the test as being a special case. Yes <u>* No</u> *(This currently applies only to specific deviations identified in the ASTM Information Letter System)*

Check The Appropriate Conclusion

Operational review of this test indicates that the results should be included in the
Multiple Test Acceptance Criteria calculations.
*Operational review of this test indicates that the results should not be included in the
Multiple Test Acceptance Criteria calculations.

Note: Supporting comments are required for all responses identified with an asterisk.

Comments

Signature

Typed Name