<u>Report On</u> <u>Sequence IIIG Evaluation</u>

Version

Conducted For

V = Valid
I = Invalid
N = Results Cannot Be Interpreted As Representative Of Oil Performance
(Non-Reference Oil) And Shall Not Be Used For Multiple Test Acceptance

NR = Non-Reference Oil Test
RO = Reference Oil Test

Test Number								
Test Stand		Stand Test		Lab Test				
Oil Code	Oil Code							
Formulation/	Formulation/Stand							
Alternate Co	Alternate Codes							
EOT Date EOT Time								

In my opinion this test been conducted in a valid manner in accordance with ASTM Test Method D 7320 and the appropriate amendments through the information letter system. The remarks included in the report describe the anomalies associated with this test.

Submitted By:

Testing Laboratory

Signature

Typed Name

Title

Form 2

Sequence IIIG

Table of Contents

1.	Title / Validity Declaration Page	Form 1
2.	Table of Contents	Form 2
3.	Summary of Test Method	Form 3
4.	Test Result Summary	Form 4
5.	Operational Summary	Form 5
6.	Used Oil Analysis	Form 6
7.	Valve Lifter and Camshaft Wear Results	Form 7
8.	Summary of Oil Ring Land Deposit Rating	Form 8
9.	Summary of Piston Deposits	Form 9
10.	Blowby Values & Plot	Form 10
11.	Viscosity Increase Plot	Form 11
12.	Hardware Information	Form 12
13.	Downtime & Outlier Report Form	Form 13
14.	ACC Conformance Statement ^A	Form 14

^A ACC Conformance Statement is required only for ACC registered tests

Form 3

Summary of Test Method

The Sequence IIIG Test is a fired-engine, dynamometer lubricant test for evaluating automotive engine oils for certain high-temperature performance characteristics, including oil thickening, varnish deposition, oil consumption, and engine wear. Such oils include both single viscosity grade and multi-viscosity grade oils that are used in spark-ignition, gasoline-fueled engines, as well as diesel engines. The Sequence IIIG Test utilizes a 1996 General Motors Powertrain 3800 Series II, water-cooled, 4 cycle, V-6 engine as the test apparatus. The Sequence IIIG test engine is an overhead valve design (OHV) and uses a single camshaft operating both intake and exhaust valves via pushrods and hydraulic valve lifters in a sliding-follower arrangement. The engine uses one intake and one exhaust valve per cylinder. Induction is handled by a modified GM port fuel injection system setting the Air-to-Fuel ratio at 15:1. The test engine is overhauled prior to each test, during which critical engine dimensions are measured and rated or measured parts (pistons, camshaft, valve lifters, etc.) are replaced.

The Sequence IIIG Test consists of a 10-minute operational check, followed by 100 hours of engine operation at moderately high speed, load, and temperature conditions. The 100-hour segment is broken down into five 20-hour test segments. Following each 20-hour segment, and the 10-minute operational check, oil samples are drawn from the engine. The kinematic viscosities of the 20-hour segment samples are compared to the viscosity of the 10-minute sample to determine the viscosity increase of the test oil.

Parameter	Set Point
Engine Speed	3600 r/min
Engine Load	250 N-m
Oil Filter Block Temperature	150 °C
Coolant Outlet Temperature	115 °C
Fuel Pressure	377.5 kPa
Intake Air Temperature	35 °C
Intake Air Pressure	0.05 kPa
Intake Air Dew Point	16.1 °C
Exhaust Back Pressure	6 kPa
Engine Coolant Flow	160 L/min
Breather Tube Coolant Flow	10 L/min
Air-to-Fuel Ratio	15.0:1
Condenser Coolant Outlet Temperature	40 °C

The Sequence IIIG Test is operated at the following test states during the 100-hour portion of the test:

Sequence IIIG Form 4

Test Result Summary

Lab		Oil Code	
Stand		Test No.	
Laborat	tory Oil Code		
Formul	ation Stand Co	ode	

Date Started	Engine No.	
Time Started	Fuel Batch	
Date Completed	SAE Viscosity	
Time Completed	TMC Oil Code ^A	
Test Length		

	Pass/Fail	Results	
	Viscosity Increase (%)	Average Cam + Lifter Wear (µm)	Average Weighted Piston Deposits (merits)
Original Units			
Transformed Results ^B			
Industry Correction Factor			
Corrected Transformed			
Severity Adjustment			
Final Transformed Result			
Final Original Unit Result			

Additional Results						
Oil Consumption Hours, h ^C	Oil Consumption, L					
Maximum Cam + Lifter Wear, µm	Number of Cold-Stuck Rings					
Average Oil Ring Plugging, %	Number of Hot-Stuck Ring					
Average Piston Varnish, merits						

^AReference Oil Tests Only ^BViscosity Increase uses LN(PVIS), Average Cam + Lifter Wear uses LN(ACLW), Weighted Piston Deposits does not use a transformation

^CTest Hours at which Oil Consumption was calculated

Form 5

Operational Summary

Lab	Oil Code	
Stand	Test No.	
Laboratory Oil Code		
Formulation Stand Code		

		QI	ЕОТ			Standard	Number of	
Parameter	Units	Threshold	QI	Target	Average	Deviation	Samples	BQD
Speed	r/min	0.000		3600				
Speed	Nm	0.000		250				
Oil Filter Block	°C	0.000		150.0				
Engine Coolant Out	°C	0.000		115.0				
Condenser Coolant Out	°C	0.000		40.0				
		0.000		15.0				
Right Air-to-Fuel		0.000		15.0				
ELeft Exhaust Back Pressure	kPa	0.000		6.0				
Right Exhaust Back Pressure	kPa	0.000		6.0				
Intake Air	kPa	0.000		0.05				
Engine Coolant Flow	L/min	0.000		160.0				

				Standard	Number of	
S	Parameter	Units	Average	Deviation	Samples	BQD
Parameters	Oil Sump	°C				
am	Pump Outlet Pressure	kPa				
Par	Gallery Pressure	kPa				
ed I	Engine Coolant In	°C				
	Fuel Inlet	°C				
controll	Intake Air	°C				
-co	Intake Air Dew Point	°C				
on	Intake Vacuum	kPa				
Z	Crankcase	kPa				
	Fuel Pressure	kPa				

Oil Consumption Data							
Hours	Initial Run-in						
Level (ml) low							
Total Oil Consumed							

NO _x Measurement					
Hours					
NO _{x,} ppm					

Form 6

Used Oil Analysis Results

Lab		Oil Code	
Stand		Test No.	
Laborat	ory Oil Code	;	
Formulation Stand Code		lode	

Visco	Viscosity Increase Data (cSt at 40°C)									
Hours	Viscosity ^A	Change	Percent							
New Oil										
Initial ^B										

Results of ICP Analysis of Used Oil									
Hours	Iron	Copper	Lead						
Initial									

^A 8000 cSt is maximum allowable viscosity ^B At end of leveling run

Form 7

Valve Lifter and Camshaft Wear Results

Lab		Oil Code	
Stand		Test No.	
Laborat	tory Oil Code		
Formul	ation Stand Co	ode	

Number	Camshaft Lobe, µm	Valve Lifter, µm	Cam & Lifter Wear, μm
1	•		
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
Maximum			
Minimum			
Average			

Form 8

Summary of Oil Ring Land Deposit Rating

Lab		Oil	Code			
Stand		Tes	t No.			
Laborator	ry Oil Code					
Formulat	ion Stand Code	;				
Rater					Rating Date	

Piston	Oil Ring Land Deposit, Merits	% Chipped
1		
2		
3		
4		
5		
6		
Average		

	% Oil Ring	Ring Sticking ^A				
Piston	Plugging	Hot-Stuck Rings	Cold-Stuck Rings			
1						
2						
3						
4						
5						
6						
Total						
Average						

^A Possible values T = top compression ringB = bottom compression ring

- O = oil ring
- N = none

Form 9

Summary of Piston Deposits

Lab		Oi	l Code			
Stand		Te	st No.			
Laboratory	v Oil Code					
Formulatio	on Stand Code					
Rater					Rating Date	
				_		

Note: CRC Manual 20 used for ALL Ratings

NOTE: These are un-weighted ratings

	Gi	ooves, mei	rits	Lands,	merits	Undercrown,
	1	2	3	2	3	merits
Piston 1						
Piston 2						
Piston 3						
Piston 4						
Piston 5						
Piston 6						
WF	0.05	0.10	0.20	0.15	0.30	0.10

Note: These are un-weighted ratings

	Piston Skirt Varnish, merits							
	Thrust	Anti-Thrust	Average					
Piston 1								
Piston 2								
Piston 3								
Piston 4								
Piston 5								
Piston 6								
Average								
WF			0.10					

PSVAVx = (PSVTx + PSVAx)/2 where x = Number of Piston

PSVTAV = average of six Thrust Piston Skirt ratings.

PSVAAV = average of six Anti-Thrust Piston Skirt ratings.

APV = average of all 12 Piston Skirt ratings.

	Total Weighted Deposits, merits	
Piston 1		
Piston 2		
Piston 3		WPDx = $(WF*G1Px)+(V)$
Piston 4		(WF*ORLDx)+(W
Piston 5		where: $x = $ Number of
Piston 6		WF = Appropri

WPDx	= (WF*G1Px) + (WF*G2Px) + (WF*G3Px) + (WF*L2Px) +
	(WF*ORLDx)+(WF*UCPx)+(WF*PSVAVx)
where:	x = Number of Piston
	WF = Appropriate Weighting Factor (WF) for part, from table.

Average Weighted Piston Deposits,	WPD =
merits	(WPD1+WPD2+WPD3+WPD4+WPD5+WPD6)/6

Sequence IIIG Form 10 Blowby Values & Plot

Lab		Oil Code	
Stand		Test No.	
Laborate	ory Oil Code		
Formula	tion Stand Cod	de	

Blowby Plot

Test					
Hours					
Blowby,					
L/min.					
Test					
Hours					
Blowby,					
L/min.					
Test	Average				
Hours					
Blowby,					
L/min.					

Form 11

Viscosity Increase Plot

Lab	0	il Code	
Stand	T	est No.	
Laborate	ory Oil Code		
Formula	tion Stand Code		

Form 12

Hardware Information

Lab	Oil Code	
Stand	Test No.	
Laborate	ory Oil Code	
Formula	tion Stand Code	

FIFO	Piston Ring Batch Code	Build Completion Date
FIFO	Oil Control (OC) Batch Code	Piston Size (Grade)
FIFO	Expander Ring (EXP) Batch Code	Block Serial Number
FIFO	Oil Filter Batch Code	Crankshaft Serial Number
FIFO	Camshaft Pour Code	Crankshaft Part Number
FIFO	Oil Cooler Batch Code	Camshaft Serial Number
FIFO	Valve Springs Batch Code	Camshaft Phosphate Batch Code
FIFO	Intake Valve Seals Batch Code	Cylinder Head Serial Number, Left
FIFO	Exhaust Valve Seals Batch Code	Cylinder Head Serial Number, Right
FIFO	Main Bearings (M) Batch Code	Top Ring Gap, mils
FIFO	Connecting Rod Bearings (CR) Batch Code	Bottom Ring Gap, mils
FIFO	Camshaft Bushing (CB) Batch Code	Bearing Kit Serial Number
FIFO	Lifter Engine Set Number (ESET)	
FIFO	Rocker Arm Batch Code	
FIFO	Piston Batch (Code)	

Form 13

Downtime & Outlier Report Form

Lab		Oil Code						
Stand		Test No	0.					
Labora	tory Oil Code							
Formulation Stand Code								

Number of	f Downtime	Occurrences		
Test Hours	Date	Downtime		Reasons
			Total Downtime (he	ours) – Maximum allowable downtime: 24 hours

Other Comments			
Number of Comment Lines			

Form 13A

Downtime & Outlier Report Form

Lab		Oil Co	de				
Stand		Test No	0.				
Laboratory Oil Code							
Formulation Stand Code							

Number of Downtime Occurrences			
Test Hours	Date	Downtime	Reasons
			Total Downtime (hours) – Maximum allowable downtime: 24 hours

Other Comments			
Number of Comment Lines			

Form 14 American Chemistry Council Code Of Practice Test Laboratory Conformance Statement

Test Laboratory		
Test Sponsor		
Formulation / Stand Code		
Test Number		
Start Date	Start Time	Time Zone

Declarations

- No. 1 All requirements of the ACC Code of Practice for which the test laboratory is responsible were met in the conduct of this test. Yes _____ No____*
- No. 2 The laboratory ran this test for the full duration following all procedural requirements; and all operational validity requirements of the latest version of the applicable test procedure (ASTM or other), including all updates issued by the organization responsible for the test, were met. Yes _____ No_____*

If the response to this Declaration is "No", does the test engineer consider the deviations from
operational validity requirements that occurred to be beyond the control of the laboratory? Yes
* No

No 3. A deviation occurred for one of the test parameters identified by the organization responsible for the test as being a special case. Yes <u>*</u> No<u>(</u>(This currently applies only to specific deviations identified in the ASTM Information Letter System)

Operational review of this test indicates that the results should be included in the
Multiple Test Acceptance Criteria calculations.
*Operational review of this test indicates that the results should not be included in the
Multiple Test Acceptance Criteria calculations.

Note: Supporting comments are required for all responses identified with an asterisk.

Comments

Signature

Date

Typed Name

Title