<u>Report On</u> <u>Sequence IIIG Evaluation</u>

Version

Conducted For

$\mathbf{V} = Valid$
$\mathbf{I} = $ Invalid
N = Results Cannot Be Interpreted As Representative Of Oil Perfromance (Non-
Reference Oil) And Shall Not Be Used For Multiple Test Acceptance

NR = Non-Reference Oil Test
RO = Reference Oil Test

Test Number									
Test Stand		Stand Test		Lab Test					
Oil Code									
Formulation/Stand									
Alternate Code	es								
EOT Date			EOT Time						

In my opinion this test conducted in a valid manner in accordance with the latest draft of Sequence IIIG procedure and the appropriate amendments through the information letter system. The remarks included in the report describe the anomalies associated with this test.

Submitted By:

Testing Laboratory

Signature

Typed Name

Title

Form 2

Sequence IIIG

Table of Contents

1.	Title / Validity Declaration Page	Form 1
2.	Table of Contents	Form 2
3.	Summary of Test Method	Form 3
4.	Test Result Summary	Form 4
5.	Operational Summary	Form 5
6.	Used Oil Analysis	Form 6
7.	Valve Lifter and Camshaft Wear Results	Form 7
8.	Summary of Oil Ring Land Deposit Rating	Form 8
9.	Summary of Piston Deposits	Form 9
10.	Blowby Values & Plot	Form 10
11.	Viscosity Increase Plot	Form 11
12.	Hardware Information	Form 12
13.	Downtime & Outlier Report Form	Form 13
14.	ACC Conformance Statement	Form 14

Form 3

Summary of Test Method

The Sequence IIIG Test is a fired-engine, dynamometer lubricant test for evaluating automotive engine oils for certain high-temperature performance characteristics, including oil thickening, varnish deposition, oil consumption, and engine wear. Such oils include both single viscosity grade and multi-viscosity grade oils that are used in spark-ignition, gasoline-fueled engines, as well as diesel engines. The Sequence IIIG Test utilizes a 1996 General Motors Powertrain 3800 Series II, water-cooled, 4 cycle, V-6 engine as the test apparatus. The Sequence IIIG test engine is an overhead valve design (OHV) and uses a single camshaft operating both intake and exhaust valves via pushrods and hydraulic valve lifters in a sliding-follower arrangement. The engine uses one intake and one exhaust valve per cylinder. Induction is handled by a modified GM port fuel injection system setting the Air-to-Fuel ratio at 15:1. The test engine is overhauled prior to each test, during which critical engine dimensions are measured and rated or measured parts (pistons, camshaft, valve lifters, etc.) are replaced.

The Sequence IIIG Test consists of a 10-minute operational check, followed by 100 hours of engine operation at moderately high speed, load, and temperature conditions. The 100-hour segment is broken down into five 20-hour test segments. Following each 20-hour segment, and the 10-minute operational check, oil samples are drawn from the engine. The kinematic viscosities of the 20-hour segment samples are compared to the viscosity of the 10-minute sample to determine the viscosity increase of the test oil.

Parameter	Set Point
Engine Speed	3600 r/min
Engine Load	250 N-m
Oil Filter Block Temperature	150 °C
Coolant Outlet Temperature	115 °C
Fuel Pressure	365 kPa
Intake Air Temperature	35 °C
Intake Air Pressure	0.05 kPa
Intake Air Dew Point	16.1 °C
Exhaust Back Pressure	6 kPa
Engine Coolant Flow	160 L/min
Breather Tube Coolant Flow	10 L/min
Air-to-Fuel Ratio	15.0:1
Breather Tube Coolant Outlet Temperature	40 °C

The Sequence IIIG Test is operated at the following test states during the 100-hour portion of the test:

SEQUENCE IIIG FORM 4

TEST RESULT SUMMARY

Lab		Oil Code	
Stand		Test No.	
Laboratory Oil Code			
Formulation Stand Code		ode	

Date Started	Engine No.	
Time Started	Fuel Batch	
Date Completed	SAE Viscosity	
Time Completed	TMC Oil Code	
Test Length		

Pass/Fail Results								
	Viscosity Increase (%)	Average Cam + Lifter Wear (μm)	Average Weighted Piston Deposits (merits)	Average Piston Skirt Varnish (merits)	Mini Rotary Viscometer Viscosity (cP)			
Original Units								
Transformed Results								
Industry Correction Factor								
Corrected Transformed								
Severity Adjustment								
Final Transformed Result								
Final Original Unit Result								

Additional Results					
Oil Consumption Hours, h ^B	Oil Consumption, L				
Maximum Cam + Lifter Wear,	Number of Cold-Stuck Rings				
Average Oil Ring Plugging, %	Number of Hot-Stuck Ring				

Most Recent Stand Reference Oil Test History ^C								
Test Number								
Oil Code								
Date Completed	TMC Oil							
Final Viscosity Increase, %	Fuel Batch							
Final Average Piston Skirt Varnish, merits								
Final Average Cam + Lifter Wear, µm								
Final Maximum Cam + Lifter Wear, µm								
Final Average Weighted Piston Deposit, merits								

^AReference Oil Tests Only ^BTest Hours at which Oil Consumption was calculated ^CNon-Reference Oil Tests Only

Form 5

Operational Summary

Lab	Oil Cod	e			
Stand	Test No				
Laboratory Oil Code					
Formulation Stand	Code				

		QI	ЕОТ	ЕОТ		Standard	Number of	
Parameter	Units	Threshol	QI	Target	Average	Deviation	Samples	BQD
Speed	r/min	0.000		3600				
Load	Nm	0.000		250				
EOil Filter Block	°C	0.000		150.0				
Engine Coolant Out	°C	0.000		115.0				
Condenser Coolant Out	°C	0.000		40.0				
Left Air-to-Fuel Ratio		0.000		15.0				
Right Air-to-Fuel Ratio		0.000		15.0				
Left Exhaust Back Pressure	kPa	0.000		6.0				
CRight Exhaust Back Pressure	kPa	0.000		6.0				
Intake Air	kPa	0.000		0.05				
Engine Coolant Flow	L/min	0.000		160.0				

				Standard	Numb	er of
leters	Parameter	Units	Average	Deviation	Samples	BQD
lete	Oil Sump	°C				
aram	Pump Outlet Pressure	kPa				
Par	Gallery Pressure	kPa				
ed]	Engine Coolant In	°C				
trolle	Fuel Inlet	°C				
Itre	Intake Air	°C				
con	Intake Air Dew Point	°C				
-u0	Intake Vacuum	kPa				
Ž	Crankcase	kPa				
	Fuel Pressure	kPa				

Oil Consumption Data							
Hours	Initial Run-in						
Level (ml) low							
Total Oil Consumed (

NO _x Measurement					
Hours					
NO _{x,} ppm					

Form 6

Used Oil Analysis Results

Lab		Oil Code	
Stand		Test No.	
Laborate	Laboratory Oil Code		
Formulation Stand Code		Code	

Viscosity Increase Data (cST at 40°C)							
Hours	Viscosity ^A	Change	Percent				
New Oil							
Initial ^B							

Results of ICP Analysis of Used Oil							
Hours	Iron	Copper	Lead				
Initial							

^A 8000 cSt is maximum allowable viscosity ^B At end of leveling run

Cold Crank Simulator Results, D 5293				
Specified Temperature, °C				
Cold-Crank Simulator Viscosity at Specified Temperature, cP				

Mini-Rotary Viscometer Results, D 4684				
MRV Temperature, °C				
MRV Result, cP				
Yield Stress, cP				

Form 7

Valve Lifter And Camshaft Wear Results

Lab		Oil Cod	e			
Stand		Test No	-			
Laborat	Laboratory Oil Code					
Formulation Stand Code						

Number	Camshaft Lobe,	Valve Lifter, µm	Cam & Lifter Wear,
	μm		μm
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
Maximum			
Minimum			
Average			

Form 8

Summary Of Oil Ring Land Deposit Rating

Lab		Oil	Code			
Stand		Tes	t No.			
Laboratory Oil Code						
Formulation Stand Code						
Rater			Rating Date			

Piston	Oil Ring Land Deposit, Merits	% Chipped
1		
2		
3		
4		
5		
6		
Average		

	% Oil Ring	Ring Sticking ^A				
Piston	Plugging	Hot-Stuck Rings	Cold-Stuck Rings			
1						
2						
3						
4						
5						
6						
Total						
Average						

^A Possible values T = top compression ringB = bottom compression ring

- O = oil ring
- N = none

Form 9

Summary Of Piston Deposits

	Oil Coo	le			
	Test No).			
Dil Code					
Stand Code					
			Rating Date		
		Dil Code Stand Code	Stand Code	Dil Code Stand Code Rating Date	Dil Code Stand Code Rating Date

Note: CRC Manual 20 used for ALL Ratings

NOTE: These are un-weighted ratings

	G	Grooves, merits			, merits	Undercrown,
	1	2	3	2	3	merits
Piston 1						
Piston 2						
Piston 3						
Piston 4						
Piston 5						
Piston 6						
WF	0.05	0.10	0.20	0.15	0.30	0.10

Note: These are un-weighted ratings

	Piston Skirt Varnish, merits						
	Thrust	Anti-Thrust	Average				
Piston 1							
Piston 2							
Piston 3							
Piston 4							
Piston 5							
Piston 6							
Average							
WF			0.10				

 $\begin{array}{ll} PSVAVx = (PSVTx + PSVAx)/2 \ where \ x = Number \ of \ Piston \\ PSVTAV = \ average \ of \ six \ Thrust \ Piston \ Skirt \ ratings. \\ PSVAAV = \ average \ of \ six \ Anti-Thrust \ Piston \ Skirt \ ratings. \\ APV = \ average \ of \ all \ 12 \ Piston \ Skirt \ ratings. \end{array}$

	Total Weighted Deposits, merits
Piston 1	
Piston 2	
Piston 3	
Piston 4	
Piston 5	
Piston 6	

WPDx = (WF*G1Px) + (WF*G2Px) + (WF*G3Px) + (WF*L2Px) +
(WF*ORLDx)+(WF*UCPx)+(WF*PSVAVx)
where: $x = Number of Piston$
<i>WF</i> = <i>Appropriate Weighting Factor (WF) for part, from table.</i>

Average Weighted Piston Deposits, merits

WPD = (WPD1+WPD2+WPD3+WPD4+WPD5+WPD6)/6

Form 10

Blowby Values & Plot

Lab		Oil	Code		
Stand		Test No.			
Laborate	ory Oil Code				
Formulation Stand Code					

Blowby Plot

Test							
Hours Blowby,							
Blowby, L/min.							
Test Hours							
Blowby,							
L/min. Test		Average					
Hours							
Blowby, L/min.							
<u>, 111111</u> •	<u>l</u>	ļ	<u>l</u>				

Form 11

Viscosity Increase Plot

Lab		Oil Code			
Stand		Test No.	-	-	
Laborate	ory Oil Code				
Formula	tion Stand Co	de			

Form 12

Hardware Information

Lab		Oil Code		
Stand		Test No.	 -	
Laborate	ory Oil Code			
Formula	tion Stand Co	de		

Build Completion Date	Piston Batch (Code)	
Block Serial Number	Piston Size (C		
Crankshaft Serial Number	Piston Ring B	atch Code	
Camshaft Serial Number	Oil Filter Bate	ch Code	
Camshaft Batch Code	Oil Cooler Ba	tch Code	
Cylinder Head Serial Number, Left	Valve Springs	Batch Code	
Cylinder Head Serial Number, Right		1	
Bearing Kit Serial Number		2	
Top Ring Gap, mils		3	
Bottom Ring Gap, mils		4	
Intake Valve Seals Batch Code	Lifter	5	
Exhaust Valve Seals Batch Code	Serial	6	
Rocker Arm Batch Code	Number	7	
Connecting Rod Type (CAST or PM)		8	
		9	
		10	
		11	
		12	

Form 13

Downtime & Outlier Report Form

Lab		Oil Code			
Stand		Test No.		 	
Laboratory Oil Code					
Formulation Stand Code					

Number o	of Downtime	e Occurrences	
Test Hours	Date	Downtime	Reasons
			Total Downtime (hours) – Maximum allowable downtime: 24 hours

Other Comments			
Number of Comment Lines			

Form 13A

Downtime & Outlier Report Form

Lab		Oil Code			
Stand		Test No.		 	
Labora	tory Oil Code				
Formul	ation Stand Co	ode			

Number of	of Downtime	e Occurrences	
Test Hours	Date	Downtime	Reasons
			Total Downtime (hours) – Maximum allowable downtime: 24 hours

Other Comments			
Number of Comment Lines			

Form 14

American Chemistry Council Code Of Practice Test Laboratory Conformance Statement

Test Laborate	ory			
Test Sponsor				
Formulation	/ Stand Code			
Test Number				
Start Date		Start Time	Time Zone	

Declarations

- No. 1 All requirements of the ACC Code of Practice for which the test laboratory is responsible were met in the conduct of this test. Yes _____ No____*
- No. 2 The laboratory ran this test for the full duration following all procedural requirements; and all operational validity requirements of the latest version of the applicable test procedure (ASTM or other), including all updates issued by the organization responsible for the test, were met. Yes _____ No_____*

If the response to this Declaration is "No", does the test engineer consider the deviations from	n
operational validity requirements that occurred to be beyond the control of the laboratory? Y	es
* No	

No 3. A deviation occurred for one of the test parameters identified by the organization responsible for the test as being a special case. Yes <u>* No</u> *(This currently applies only to specific deviations identified in the ASTM Information Letter System)*

Operational review of this test indicates that the results should be included in the Multiple Test Acceptance Criteria calculations.
*Operational review of this test indicates that the results should not be included in the Multiple Test Acceptance Criteria calculations.

Note: Supporting comments are required for all responses identified with an asterisk.

Comments

Signature

Date

Typed Name

Title