Report On Sequence IIIG Evaluation

Version IIIG VERSION 20030421

Conducted For

TSTSPON1

TSTSPON2

	V = Valid
LABVALID	I = Invalid
LADVALID	N = Results Cannot Be Interpreted As Representative Of Oil Perfromance (Non-
	Reference Oil) And Shall Not Be Used For Multiple Test Acceptance

TSTOIL	NR = Non-Reference Oil Test
ISTOIL	RO = Reference Oil Test

Test Number								
Test Stand	STAND	Stand Test	STRUN	Lab Test	LABRUN			
Oil Code	Oil Code OILCODE							
Formulation	Formulation/Stand FORM							
Alternate Codes		ALTCODE1	LTCODE1 ALTCODE2		ALTCODE3			
EOT Date		DTCOMP	EOT Time	:	EOTTIME			

In my opinion this test has hegen conducted in a valid manner in accordance with the latest draft of Sequence IIIG procedure and the appropriate amendments through the information letter system. The remarks included in the report describe the anomalies associated with this test.

Submitted By:	SUBLAB	
•		Testing Laboratory
	SUBSIGIM	
		Signature
	SUBNAME	
		Typed Name
	SUBTITLE	
	-	Title

Form 2

Sequence IIIG

Table of Contents

1.	Title / Validity Declaration Page	Form 1
2.	Table of Contents	Form 2
3.	Summary of Test Method	Form 3
4.	Test Result Summary	Form 4
5.	Operational Summary	Form 5
6.	Used Oil Analysis	Form 6
7.	Valve Lifter and Camshaft Wear Results	Form 7
8.	Summary of Oil Ring Land Deposit Rating	Form 8
9.	Summary of Piston Deposits	Form 9
10.	Blowby Values & Plot	Form 10
11.	Viscosity Increase Plot	Form 11
12.	Hardware Information	Form 12
13.	Downtime & Outlier Report Form	Form 13

Form 3

Summary of Test Method

The Sequence IIIG Test is a fired-engine, dynamometer lubricant test for evaluating automotive engine oils for certain high-temperature performance characteristics, including oil thickening, varnish deposition, oil consumption, and engine wear. Such oils include both single viscosity grade and multi-viscosity grade oils that are used in spark-ignition, gasoline-fueled engines, as well as diesel engines.

The Sequence IIIG Test utilizes a 1996 model Buick 3800 Series II, water-cooled, 4 cycle, V-6 engine as the test apparatus. The Sequence IIIG test engine is an overhead valve design (OHV) and uses a single camshaft operating both intake and exhaust valves via pushrods and hydraulic valve lifters in a sliding-follower arrangement. The engine uses one intake and one exhaust valve per cylinder. Induction is handled by a modified GM port fuel injection system setting the Air-to-Fuel ratio at 15:1. The test engine is overhauled prior to each test, during which critical engine dimensions are measured and rated or measured parts (pistons, camshaft, valve lifters, etc.) are replaced.

The Sequence IIIG Test consists of a 10-minute operational check, followed by 100 hours of engine operation at moderately high speed, load, and temperature conditions. The 100-hour segment is broken down into five 20-hour test segments. Following each 20-hour segment, and the 10-minute operational check, oil samples are drawn from the engine. The kinematic viscosities of the 20-hour segment samples are compared to the viscosity of the 10-minute sample to determine the viscosity increase of the test oil.

The Sequence IIIG Test is operated at the following test states during the 100-hour portion of the test:

portion of the test:						
Parameter	Set Point					
Engine Speed	3600 r/min					
Engine Load	250 N-m					
Oil Filter Block Temperature	150 °C					
Coolant Outlet Temperature	115 °C					
Fuel Pressure	365 kPa					
Intake Air Temperature	35 °C					
Intake Air Pressure	0.05 kPa					
Intake Air Dew Point	16.1 °C					
Exhaust Back Pressure	6 kPa					
Engine Coolant Flow	160 L/min					
Breather Tube Coolant Flow	10 L/min					
Air-to-Fuel Ratio	15.0:1					
Breather Tube Coolant Outlet Temperature	40 °C					

SEQUENCE IIIG FORM 4

TEST RESULT SUMMARY

Lab	LAB	Oil Co	de	OILCODE	Ξ			
Stand	STAND	Test N	0.	STAND		STRUN	 LABRUN	
Laboratory Oil Code LABO			CODE					
Formu	Formulation Stand Code FORD							

Date Started	DTSTRT	Engine No.	ENGINENO
Time Started	STRTTIME	Fuel Batch	FUELBTID
Date Completed	DTCOMP	SAE Viscosity	SAEVISC
Time Completed	EOTTIME	TMC Oil Code	IND
Test Length	TESTLEN		

Pass/Fail Results									
	Viscosity Increase (%)	Average Cam + Lifter Wear (µm)	Average Weighted Piston Deposits (merits)	Average Piston Skirt Varnish (merits)	Number of Hot- Stuck Rings	Oil Consumption (L) ^B			
Original Units	PVIS	ACLW	WPD	APV	HSTUKT	OILCON			
Transformed Results	TPVIS	TACLW							
Industry Correction Factor	PVIS_CF	ACLW_CF	WPD_CF	APV_CF					
Corrected Transformed	PVIS_COR	ACLW_COR							
Severity Adjustment	PVIS_SA	ACLW_SA	WPD_SA	APV_SA					
Final Transformed Result	TPVISFNL	TACLWFNL							
Final Original Unit Result	PVISFNL	ACLWFNL	WPDFNL	APVFNL					

Additional Results								
Oil Consumption Hours, h B			OCONHRS Average Oil Ring Plugging, %		ORPAVG			
Maximum Cam + Lifter Wear,		MCLW		Νυ	ımber of Col	d-Stuck Rings	CSTUKT	
MRV Temperature, °C MRVTEME		MRV Result, cP		P	MRV	Yield Stress, cP	YSTRESS	

Most Recent Stand Reference Oil Test History ^C								
Test Number	RSTAND	- RSTRUN	- RLABRUN					
Oil Code ROILCODE								
Date Completed	RDTCOMP	TMC Oil	RIND					
Final Viscosity Increase, %	RPVISFNL	Fuel Batch	RFUELBID					
Final Average Piston Skirt Varnish, merits	RAPVFNL							
Final Average Cam + Lifter Wear, μm	RACLWFNL							
Final Maximum Cam + Lifter Wear, µm	RMCLWFNL							
Final Average Weighted Piston Deposit, merits	RWPDFNL							

AReference Oil Tests Only

BTest Hours at which Oil Consumption was calculated CNon-Reference Oil Tests Only

Form 5

Operational Summary

Lab	LAB	Oil Code		OILCODE		
Stand	STAND	Test N	0.	STAND	 STRUN	 LABRUN
Laboratory Oil Code LABO			LABO	CODE		
Formulation Stand Code FORM						

							Standard	Numb	er of
	Parameter	Units	QI	EOT	Target	Average	Deviation	Samples	BQD
S	Speed	r/min	0.000	QRPM	3600	ARPM	SRPM	NRPM	BRPM
ete	Load	Nm	0.000	QLOAD	250	ALOAD	SLOAD	NLOAD	BLOAD
	Oil Filter Block	°C	0.000	QOTEMP	150.0	AOTEMP	SOTEMP	NOTEMP	BOTEMP
ara	Engine Coolant Out	°C	0.000	QCOLOU".	115.0	ACOLOUT	SCOLOUT	NCOLOUT	BCOLOU".
	Condenser Coolant Out	°C	0.000	QCCOLOI	40.0	ACCOLOU	SCCOLOU'	NCCOLOU7	BCCOLOU
	Left Air-to-Fuel Ratio		0.000	QLAFR	15.0	ALAFR	SLAFR	NLAFR	BLAFR
tro	Right Air-to-Fuel Ratio		0.000	QRAFR	15.0	ARAFR	SRAFR	NRAFR	BRAFR
0	Left Exhaust Back Pressure	kPa	0.000	QLEXBP	6.0	ALEXBP	SLEXBP	NLEXBP	BLEXBP
C	Right Exhaust Back Pressure	kPa	0.000	QREXBP	6.0	AREXBP	SREXBP	NREXBP	BREXBP
	Intake Air	kPa	0.000	QINAIR		AINAIR	SINAIR	NINAIR	BINAIR
	Engine Coolant Flow	L/min	0.000	QCOLFLC	160.0	ACOLFLO	SCOLFLO	NCOLFLO	BCOLFLC

			Standard		Numl	ber of
ers	Parameter	Units	Average	Deviation	Samples	BQD
ameters	Oil Sump	°C	AOSUMP	SOSUMP	NOSUMP	BOSUMP
	Pump Outlet Pressure	kPa	APOUTP	SPOUTP	NPOUTP	BPOUTP
Par	Gallery Pressure	kPa	AOILPRS	SOILPRS	NOILPRS	BOILPRS
	Engine Coolant In	°C	AECOLIN	SECOLIN	NECOLIN	BECOLIN
olle	Fuel Inlet	°C	AFUELIN	SFUELIN	NFUELIN	BFUELIN
ıtr	Intake Air	°C	AINAT	SINAT	NINAT	BINAT
c01	Intake Air Dew Point	°C	AINDEW	SINDEW	NINDEW	BINDEW
on-controlled	Intake Vacuum	kPa	AINVAC	SINVAC	NINVAC	BINVAC
Ž	Crankcase	kPa	ACCASEP	SCCASEP	NCCASEP	BCCASEP
	Fuel Pressure	kPa	APFUEL	SPFUEL	NPFUEL	BPFUEL

Oil Consumption Data										
Hours	Initial Run-in	OCONH0	OCONHO	OCONH0t	OCONH080	OCONH1				
Level (ml) low	OILLINI	OILLH(OILLHO	OILLHO	OILLHO	OILLH1				

NO _x Measurement						
Hours	NOXHH019	NOXHH04	NOXHH099			
NO _x , ppm	NOX_H019	NOX_H049	NOX_H099			

Form 6

Used Oil Analysis Results

Lab	LAB	Oil Code		OILCODE			
Stand	STAND	Test N	0.	STAND	 STRUN	 LABRUN	
Labora	Laboratory Oil Code LAB			CODE			
Formulation Stand Code			FORM				

Visco	Viscosity Increase Data (cST at 40°C)									
Hours	Viscosity ^A	Change	Percent							
New Oil	VNEW									
Initial ^B	VINI									
VISTH020	VIS_H020	DVISH020	PVISH020							
VISTH040	VIS_H040	DVISH040	PVISH040							
VISTH060	VIS_H060	DVISH060	PVISH060							
VISTH080	VIS_H080	DVISH080	PVISH080							
VISTH100	VIS_H100	DVISH100	PVISH100							
TESTLEN	VISEOT	DVISEOT	PVIS							

Results of ICP Analysis of Used Oil								
Hours	Iron	Copper	Lead					
Initial	FEWMINI	CUWMINI	PBWMINI					
TST_H020	FEWMH020	CUWMH020	PBWMH020					
TST_H040	FEWMH040	CUWMH040	PBWMH040					
TST_H060	FEWMH060	CUWMH06	PBWMH060					
TST_H080	FEWMH080	CUWMH080	PBWMH080					
TST_H100	FEWMH100	CUWMH100	PBWMH100					
TESTLEN	FEWMEOT	CUWMEOT						

^B At end of leveling run

Cold Crank Simulator Results, D 5293								
Final Temperature, °C	CCSTEMP							
Final Cold-Crank Simulator Viscosity, cP	CCS							

Mini-Rotary Viscometer Results, D 4684						
MRV Temperature, °C	MRVTEMP					
MRV Result, cP	MRV					
Yield Stress, cP	YSTRESS					

A 8000 cSt is maximum allowable viscosity

Form 7

Valve Lifter And Camshaft Wear Results

Lab	LAB	Oil Code		OILCODE		
Stand	STAND	Test No	0.	STAND	 STRUN	 LABRUN
Labora	Laboratory Oil Code LABO			CODE		
Formu	Formulation Stand Code FOR					

Number	Camshaft Lobe,	Valve Lifter, µm	Cam & Lifter Wear,
	μm		μm
1	CAMW01	LFTW01	CLW01
2	CAMW02	LFTW02	CLW02
3	CAMW03	LFTW03	CLW03
4	CAMW04	LFTW04	CLW04
5	CAMW05	LFTW05	CLW05
6	CAMW06	LFTW06	CLW06
7	CAMW07	LFTW07	CLW07
8	CAMW08	LFTW08	CLW08
9	CAMW09	LFTW09	CLW09
10	CAMW10	LFTW10	CLW10
11	CAMW11	LFTW11	CLW11
12	CAMW12	LFTW12	CLW12
Maximum	MAXCW	MAXLFTW	MCLW
Minimum	MINCW	MINLFTW	MINCLW
Average	AVGCW	AVGLFTW	ACLW

Form 8

LAB ummary Of Oil Ring Land Deposit Rating

STAND STAND STRUN LABRUN

Lab			E9B6c				
Stand	Tes		tFQB.M				
Laboratory Oil Code		RLDRA	TER	RLD	ORTDT		
Formula	Formulation Stand Code						
Rater					Rating Date		

	Oil Ring Land	ORCHIP1
Piston	Oll Ring Land Deposit? Merits	%Chipped
1	ORLD3	ORCHIP3
2	ORLD4	ORCHIP4
3	ORLD5	ORCHIP5
4	ORLD6	ORCHIP6
5	ORLD	AVGORCHP
6		7.17 0 0 1 1 1 1
Average		

	% Oil Ring	Ring Sticking ^A			
Piston	Plugging	Hot-Stuck, Rings	Cold-Stuck Rings		
1	OKFI	HOTOKI	COTOKT		
2	ORP2	HSTUK2	CSTUK2		
3	ORP3	HSTUK3	CSTUK3		
4	ORP4	HSTUK4	CSTUK4		
5	ORP5	HSTUK5	CSTUK5		
6	ORP6	HSTUK6	CSTUK6		
Total					
Average					

 $\begin{array}{ll} ^{A} \mbox{ Possible values } & T = \mbox{ top compression ring } \\ & B = \mbox{ bottom compression ring } \\ & O = \mbox{ oil ring } \\ \end{array}$

N = none

Form 9

Summary Of Piston Deposits

Lab	0	il Gode		OILCODE	
Stand	T	est No.			
Laborator	y Oil Code	STAND		STAND	STRUN LABRUN
Formulati	on Stand Code	LABOCODE			
Rater		FORM	Rating Date		

Note: CRC Manual 14 used Plot PATE Ratings

RLDRTDT

NOTE: These are un-weighted ratings

	G	rooves, me		L	ands, meri	its	Undercrown,
	1	2	3	Crown	2	3	merits
Piston 1							
Piston 2	G1P1	G2P1	G3P1		L2P1	ORLD1	UCP1
Piston 3	G1P2	G2P2	G3P2		L2P2	ORLD2	UCP2
Piston 4	G1P3	G2P3	G3P3		L2P3	ORLD3	UCP3
Piston 5	G1P4	G2P4	G3P4		L2P4	ORLD4	UCP4
Piston 6	G1P5	G2P5	G3P5		L2P5	ORLD5	UCP5
WF	G1P605	$\frac{0.2}{0.10}$	G3F6		1,15 1,276	0.30 ORLD6	UCP 0.10

Note: These are unweighted ratings

	Piston Skirt Varnish, merits					
	Thrust	Anti-Thrust	Average			
Piston 1						
Piston 2	PSVT1	PSVA1	PSVAV1			
Piston 3						
Piston 4	PSVT2	PSVA2	PSVAV2			
Piston 5	PSVT3	PSVA3	PSVAV3			
Piston 6	PSVT4	PSVA4	PSVAV4			
Average	PSVT5	PSVA5	PSVAV5			
WF	PSVT6	PSVA6	PSVAV6			

PSVAVx = (PSVTx + PSVAx)/2 where x = Number of Piston PSVTAV = average of six Thrust Piston Skirt ratings. PSVAAV = average of six Anti-Thrust Piston Skirt ratings. APV = average of all 12 Piston Skirt ratings.

	PSVAAV PSV	TAV
	Total	
	Weighted	
	Deposits,	
	merits	
Piston 1	WPD1	
Piston 2	WPD2	
Piston 3	WPD3	\mathbf{W}
Piston 4	20	
Piston 5	WPD4	wh
Piston 6	WPD5	
	WPD6	

 $WPDx = (WF*G1Px)+(WF*G2Px)+(WF*G3Px)+(WF*L2Px)+ \\ (WF*ORLDx)+(WF*UCPx)+(WF*PSVAVx)$

where: x = Number of Piston

APV

WF = Appropriate Weighting Factor (WF) for part, from table.

Average Weighted Piston Deposits, merits WPD

WPD = (WPD1 + WPD2 + WPD3 + WPD4 + WPD5 + WPD6)/6

Form 10

Blowby Values & Plot

OILCODE

Lab		Oil C	Code STAND		OIL	CODE				
Stand		Test	STAND No. LABOC	ODE		STAND	STRUN LA	ABRUN 		
				JDE						
	atory Oil C		FORM							
Formu	ılation Star	nd Code								
IM _{RIOW} I	by Plot									
DIOWI	by Flot									
	BBYTH001	BBYTH006	BBYTH011	BBYTH016	BBYTH021	BBYTH026	BBYTH031	BBYTH036	BBYTH041	BBYTH
est										
lowby	BLWBH001	BLWBH006	BLWBH011	BLWBH016	BLWBH021	BLWBH026	BLWBH031	BLWBH036	BLWBH041	BLWBH
Blowby, /min.										
est	BBYTH051	BBYTH056	BBYTH061	BBYTH066	BBYTH071	BBYTH076	BBYTH081	BBYTH086	BBYTH091	BBYTH
Iours										
Blowby,	BLWBH051	BLWBH056	BLWBH061	BLWBH066	BLWBH071	BLWBH076	BLWBH081	BLWBH086	BLWBH091	BLWBH
/min.										
Cest Hours	BBYTH099									
Blowby,			1							
/min.	BLWBH099	ABLOBY								

Form 11 Viscosity Increase Plot

Lab		Oil Code			
Stand		Test No.			
Labora	atory Oil Code	IΔ	R	011.0005	
Formu	llation Stand Co	ode	-	OILCODE	
			TAND	STAND	STRUN LABRUN
			ABOCODE		
		F	ORM		

INIM

Form 12

Hardware Information

Lab		Oil Code	LAB		OILCODE	
Stand		Test No.	STAND		STAND	STRUN LABRUN
Laborat	tory Oil Code	!	LABOCODE			
Formula	ation Stand C	ode	FORM	•		

Build Completion Date	BUILDDT	Piston Batch	(Code)	PIST	BAT
Block Serial Number	BLOCKSN CRANKSN	Piston Size (Grade)	PISTSIZI	ODE
Crankshaft Serial Number	CAMSN	Piston Ring	Batch Code	OILFI	
Camshaft Serial Number	LHEADSN	Oil Filter Ba	tch Code	INVSL	BAT
Cylinder Head Serial Number, Left	RHEADSN	Intake Valve	Seals Batch		
Cylinder Head Serial Number, Right	BRNGSN TRINGGAP	Valve Spring	gs Batch Cod	e LFTR	
Bearing Kit Serial Number	BRINGGAP		1	LFTR	
Top Ring Gap, mils			2	LFTR	
Bottom Ring Gap, mils			3	LFTR LFTR	
			4	LFTR	
		Lifter	5	LFTR	8SN
	Serial	6	LFTR	9SN R10SN	
		Number	7		R11SN
			8	LFTF	R12SN
			9		
			10		
			11		
			12		

Form 13

Downtime & Outlier Report Form

Lab		Oil Code		
Stand		Test No. LAB		OIL CODE
Labora	tory Oil Cod	le ST	,ND	STAND STRUM LARRIN
Formul	lation Stand	Code	OCODE	STAND STRON LABRON
		ΕO	ON A	
Numbe	r of Downtin	ne Occurrences	avi	
Test	Date	Downtime		Reasons

Test Hours	l Date		Downtime			Reasons				
				DWNO	iC.					
DOWN	R001		R001	DTIME	R001	DREAR001				
1WOD	R002	DDA	TR002	DTIME	R002	DREAR002				
DOW	R003	DDAT	R003	DTIME	R003	DREAR003	•			
DOWN	R004	DDAT	R004	DTIME	R004	DREAR004				
DOW	R005	DDA	TR005	DTIMI	R005	DREAR005				
DOW1	R006	DDA ⁻	TR006	DTIMI	R006	DREAR006				
				TOTLD	NWC					
				TOTCOM						
M R001										
MR002					Tot	tal Downtime (h	ours) – V	Iaximum allowable downtime: 24 hou		

OCOMR002 Total Downtime (hours) – Maximum allowable downtime: 24 hours
OCOMR003

OCOM	
ОСОМ	R004 Other Comments
ОСОМ	Number of Comment Lines R005
ОСОМ	
OCOM	R007
OCOM	R008
ОСОМ	R009
осом	R010
осом	R011
ОСОМ	R012
ОСОМ	R013
ОСОМ	R014

Form 13A

Downtime & Outlier Report Form

Lab		Oil Code			
Stand		Test No.	LAB	 OILCODE-	
Labora	atory Oil Code	e	STAND	STAND STRUN LARRUN	
Formu	lation Stand (Code	LAROCODE	OTAND STRON EABROW	
			FORM		

Number of Downtime Occurrences Test Date **Downtime Reasons** Hours DOWNR007 DDATR007 DTIMR007 DREAR007 DOWNROOS DDATROOS DTIMR008 DREAR008 DREAR009 DOWNRO09 DDATR009 DTIMR009 DOWNR010 DDATR010 DTIMR010 DREAR010 DTIMR011 DREAR011 DOWNR011 DDATR011 DOWNR012 DDATR012 DREAR012 DTIMR012 TOTL DOWN OCOMR015 Total Downtime (hours) – Maximum allowable downtime: 24 hours OCOMR016

OCOM R019
OCOM R020
OCOM R021
OCOM R022
OCOM R023
OCOM R024
OCOM R025
OCOM R026
OCOM R027
OCOM R027
OCOM R029
OCOM R030

OCOMR017