<u>REPORT ON</u> <u>SEQUENCE IIIG EVALUATION</u>

VERSION 20020725 BETA

CONDUCTED FOR

TSTSPON1 TSTSPON2

V = VALID
 I = INVALID
N = RESULTS CANNOT BE INTERPRETED AS REPRESENTATIVE OF OIL PERFORMANCE (NON-REFERENCE OIL) AND SHALL NOT
BE USED FOR MULTIPLE TEST ACCEPTANCE

TSTOIL	NR = Non-Reference Oil Test
	RO = Reference Oil Test

Test Number									
Test Stand	Stand STAND Stand Test Numb					Lab Test Number LABRUN			
Oil Code d	Oil Code OILCODE								
Formulation/Stand Co	de 1	FORM							
Alternate Codes	Alternate Codes ALTCODE1 ALTCODE2 ALTCODE3								
EOT Date DTCOMP EOT Time EOTTIME									

In my opinion this test *OPVALID* been conducted in a valid manner in accordance with the latest draft of Sequence IIIG procedure and the appropriate amendments through the information letter system. The remarks included in the report describe the anomalies associated with this test.

SUBMITTED BY: SUBLAB

Testing Laboratory

SUBSIGIM

Signature

SUBNAME

Typed Name

SUBTITLE

Title

Form 2

Sequence IIIG

Table of Contents

1.	Title / Validity Declaration Page	Form 1
2.	Table of Contents	Form 2
3.	Summary of Test Method	Form 3
4.	Test Result Summary	Form 4
5.	Operational Summary	Form 5
6.	Used Oil Analysis	Form 6
7.	Valve Lifter and Camshaft Wear Results	Form 7
8.	Summary of Oil Ring Land Deposit Rating	Form 8
9.	Summary of Piston Deposits	Form 9
10.	Blowby Values & Plot	Form 10
11.	Viscosity Increase Plot	Form 11
12.	Hardware Information	Form 12
13.	Downtime & Outlier Report Form	Form 13

Sequence IIIG

FORM 3

Summary of Test Method

The Sequence IIIG Test is a fired-engine, dynamometer lubricant test for evaluating automotive engine oils for certain high-temperature performance characteristics, including oil thickening, varnish deposition, oil consumption, and engine wear. Such oils include both single viscosity grade and multiviscosity grade oils that are used in spark-ignition, gasoline-fueled engines, as well as diesel engines.

The Sequence IIIG Test utilizes a 1996 model Buick 3800 Series II, water-cooled, 4 cycle, V-6 engine as the test apparatus. The Sequence IIIG test engine is an overhead valve design (OHV) and uses a single camshaft operating both intake and exhaust valves via pushrods and hydraulic valve lifters in a sliding-follower arrangement. The engine uses one intake and one exhaust valve per cylinder. Induction is handled by a modified GM port fuel injection system setting the Air-to-Fuel ratio at 15:1. The test engine is overhauled prior to each test, during which critical engine dimensions are measured and rated or measured parts (pistons, camshaft, valve lifters, etc.) are replaced.

The Sequence IIIG Test consists of a 10-minute operational check, followed by 100 hours of engine operation at moderately high speed, load, and temperature conditions. The 100-hour segment is broken down into five 20-hour test segments. Following each 20-hour segment, and the 10-minute operational check, oil samples are drawn from the engine. The kinematic viscosities of the 20-hour segment samples are compared to the viscosity of the 10-minute sample to determine the viscosity increase of the test oil.

Parameter	Set Point
Engine Speed	3600 r/min
Engine Load	250 N-m
Oil Filter Block Temperature	150 °C
Coolant Outlet Temperature	115 °C
Fuel Pressure	365 kPa
Intake Air Temperature	35 °C
Intake Air Pressure	0.05 kPa
Intake Air Dew Point	16.1 °C
Exhaust Back Pressure	6 kPa
Engine Coolant Flow	160 L/min
Breather Tube Coolant Flow	10 L/min
Air-to-Fuel Ratio	15.0:1
Breather Tube Coolant Outlet Temperature	40 °C

The Sequence IIIG Test is operated at the following test states during the 100-hour portion of the test:

SEQUENCE IIIG FORM 4 TEST RESULT SUMMARY

LAB	LAB	OIL CODE	OILCODE
TEST STAND NO.	STAND	TEST NO.	STAND - STRUN - LABRUN
LABORATORY OIL CODE	LABOCODE		
FORMULATION STAND CODE	FORM		

DATE STARTED	DTSTRT	ENGINE NO.	ENGINENO
TIME STARTED	STRTTIME	FUEL BATCH	FUELBTID
DATE COMPLETED	DTCOMP	SAE VISCOSITY	SAEVISC
TIME COMPLETED	EOTTIME	TMC OIL CODE	IND
TEST LENGTH	TESTLEN		

	Pass/Fail Results									
	Viscosity Increase (%)	Average Cam + Lifter Wear (µm)	Average Weighted Piston Deposits (merits)	Average Piston Skirt Varnish (merits)	Number of Hot-Stuck Rings	Oil Consumption (L) ^B				
Original Units	riginal Units PVIS AC		WPD	APV	HSTUKT	OILCON				
Transformed Results	TPVIS	TACLW								
Industry Correction Factor	PVIS_CF	ACLW_CF	WPD_CF	APV_CF						
Corrected Transformed Result	PVIS_COR	ACLW_COR								
Severity Adjustment	PVIS_SA	ACLW_SA	WPD_SA	APV_SA						
Final Transformed Result	TPVISFNL	TACLWFNL								
Final Original Unit Result	PVISFNL	ACLWFNL	WPDFNL	APVFNL						

Additional Results							
Oil Consumption Hours, h B OCONHRS Average Oil Ring Plugging , % ORPAVG							
Maximum Cam + Lifter Wear, μmMCLWNumber of Cold-Stuck RingsCSTUKT							

Most Recent Stand Reference Oil Test History $^{\mathrm{C}}$						
Test Number	Fest Number RSTAND - RSTRUN - RLABRUN					
Oilcode	ROILCODE					
Date Completed	RDTCOMP	TMC Oil Code	RIND			
Final Viscosity Increase, %	RPVISFNL	Fuel Batch	RFUELBID			
Final Average Piston Skirt Varnish, merits	RAPVFNL					
Final Average Cam + Lifter Wear, µm	RACLWFNL					
Final Maximum Cam + Lifter Wear, µm	RMCLWFNL					
Final Average Weighted Piston Deposit, merits	RWPDFNL					

^A Reference Oil Tests Only

^B Test Hours at which Oil Consumption was calculated

^C Non-Reference Oil Tests Only

SEQUENCE IIIG FORM 5 OPERATIONAL SUMMARY

LAB	LAB	OIL CODE	OILCODE
TEST STAND NO.	STAND	TEST NO.	STAND - STRUN - LABRUN
LABORATORY OIL CODE	LABOCODE		
FORMULATION STAND CODE	FORM		

			01	ЕОТ			Standard	Number Of	
	Parameter	Units	QI Threshold	QI	Target	Average	Deviation	Samples	BQD
	Speed	r/min	0.000	QRPM	3600	ARPM	SRPM	NRPM	BRPM
ters	Load	Nm	0.000	QLOAD	250	ALOAD	SLOAD	NLOAD	BLOAD
mel	Oil Filter Block	°C	0.000	QOTEMP	150.0	AOTEMP	SOTEMP	NOTEMP	BOTEMP
ara	Engine Coolant Out	°C	0.000	QCOLOUT	115.0	ACOLOUT	SCOLOUT	NCOLOUT	BCOLOUT
ed P	Condenser Coolant Out	°C	0.000	QCCOLOU	T 40.0	ACCOLOUT	SCCOLOUT	NCCOLOUI	<i>BCCOLOUT</i>
rolle	Left Air-to-Fuel Ratio		0.000	QLAFR	15.0	ALAFR	SLAFR	NLAFR	BLAFR
ntr	Right Air-to-Fuel Ratio		0.000	QRAFR	15.0	ARAFR	SRAFR	NRAFR	BRAFR
ပီ	Left Exhaust Back Pressure	kPa	0.000	QLEXBP	6.0	ALEXBP	SLEXBP	NLEXBP	BLEXBP
	Right Exhaust Back Pressure	kPa	0.000	QREXBP	6.0	AREXBP	SREXBP	NREXBP	BREXBP
	Intake Air	kPa	0.000	QINAIR	0.05	AINAIR	SINAIR	NINAIR	BINAIR
	Engine Coolant Flow	L/min	0.000	QCOLFLO	160.0	ACOLFLO	SCOLFLO	NCOLFLO	BCOLFLO

	Parameter	Units		Standard	Number Of	
5			Average	Deviation	Samples	BQD
eters	Oil Sump	°C	AOSUMP	SOSUMP	NOSUMP	BOSUMP
ame	Pump Outlet Pressure	kPa	APOUTP	SPOUTP	NPOUTP	BPOUTP
trolled Parame	Gallery Pressure	kPa	AOILPRS	SOILPRS	NOILPRS	BOILPRS
	Engine Coolant In	°C	AECOLIN	SECOLIN	NECOLIN	BECOLIN
	Fuel Inlet	°C	AFUELIN	SFUELIN	NFUELIN	BFUELIN
ont	Intake Air	°C	AINAT	SINAT	NINAT	BINAT
l o u	Intake Air Dew Point	°C	AINDEW	SINDEW	NINDEW	BINDEW
N0 N	Intake Vacuum	kPa	AINVAC	SINVAC	NINVAC	BINVAC
	Crankcase	kPa	ACCASEP	SCCASEP	NCCASEP	BCCASEP
	Fuel Pressure	kPa	APFUEL	SPFUEL	NPFUEL	BPFUEL

OIL CONSUMPTION DATA						
HOURS	Initial O Run-in	CONH02000	CONH040O	CONH06000	CONH080O	CONH100
LEVEL (ml) low	OILLINI (DILLH020 (OILLH040 C	DILLH060 (OILLH080 (DILLH100

NOx Measurement			
Hours	NOXHH019	NOXHH049	NOXHH099
NOx, ppm	NOX_H019	NOX_H049	NOX_H099

SEQUENCE IIIG FORM 6 USED OIL ANALYSIS RESULTS

LAB	LAB	OIL CODE	OILCODE
TEST STAND NO.	STAND	TEST NO.	STAND - STRUN - LABRUN
LABORATORY OIL CODE	LABOCODE		
FORMULATION STAND CODE	FORM		

VISCO	VISCOSITY INCREASE DATA (cSt AT 40°C)				
HOURS	VISCOSITY A	CHANGE	PERCENT	Hours	
NEW OIL	VNEW			Initial	
INITIAL ^B	VINI			TST_H020	
VISTH020	VIS_H020	DVISH020	PVISH020	TST_H040	
VISTH040	VIS_H040	DVISH040	PVISH040	TST_H060	
VISTH060	VIS_H060	DVISH060	PVISH060	TST_H080	
VISTH080	VIS_H080	DVISH080	PVISH080	TST_H100	
VISTH100	VIS_H100	DVISH100	PVISH100	TESTLEN	
TESTLEN	VISEOT	DVISEOT	PVIS		

Resu	Results of ICP Analysis of Used Oil						
Hours	Iron	Copper	Lead				
Initial	FEWMINI	CUWMINI	PBWMINI				
TST_H020	FEWMH020	CUWMH020) PBWMH020				
TST_H040	FEWMH040	CUWMH040	PBWMH040				
TST_H060	FEWMH060	CUWMH060) PBWMH060				
TST_H080	FEWMH080	CUWMH080	PBWMH080				
TST_H100	FEWMH100	CUWMH100	PBWMH100				
TESTLEN	FEWMEOT	CUWMEOT	PBWMEOT				

^A 8000 cSt is maximum allowable viscosity

^B At end of leveling run

Cold Crank Simulator Results, D 5293				
Final Temperature, °C	CCSTEMP			
Final Cold-Crank Simulator Viscosity, cP	CCS			

Mini-Rotary Viscometer Results, D 4684				
MRV Temperature, °C	MRVTEMP			
MRV Result, cP	MRV			
Yield Stress, cP	YSTRESS			

SEQUENCE IIIG FORM 7 VALVE LIFTER AND CAMSHAFT WEAR RESULTS

LAB	LAB	OIL CODE	OILCODE
TEST STAND NO.	STAND	TEST NO.	STAND - STRUN - LABRUN
LABORATORY OIL CODE	LABOCODE		
FORMULATION STAND CODE	FORM		

NUMBER	CAMSHAFT LOBE, µm	VALVE LIFTER, µm	CAM & LIFTER WEAR, µm
1	CAMW01	LFTW01	CLW01
2	CAMW02	LFTW02	CLW02
3	CAMW03	LFTW03	CLW03
4	CAMW04	LFTW04	CLW04
5	CAMW05	LFTW05	CLW05
6	CAMW06	LFTW06	CLW06
7	CAMW07	LFTW07	CLW07
8	CAMW08	LFTW08	CLW08
9	CAMW09	LFTW09	CLW09
10	CAMW10	LFTW10	CLW10
11	CAMW11	LFTW11	CLW11
12	CAMW12	LFTW12	CLW12
MAXIMUM	MAXCW	MAXLFTW	MCLW
MINIMUM	MINCW	MINLFTW	MINCLW
AVERAGE	AVGCW	AVGLFTW	ACLW

SEQUENCE IIIG FORM 8 SUMMARY OF OIL RING LAND DEPOSIT RATING

LAB	LAB	OIL CODE	OILCODE
TEST STAND NO.	STAND	TEST NO.	STAND - STRUN - LABRUN
LABORATORY OIL CODE	LABOCODE		
FORMULATION STAND CODE	FORM		
RATER	RLDRATER	RATING DATE	RLDRTDT

PISTON	OIL RING LAND DEPOSIT, MERITS	% CHIPPED
1	ORLD1	ORCHIP1
2	ORLD2	ORCHIP2
3	ORLD3	ORCHIP3
4	ORLD4	ORCHIP4
5	ORLD5	ORCHIP5
6	ORLD6	ORCHIP6
Average	ORLD	AVGORCHP

DIGTION	% OIL RING	RING STICKING A				
PISTON	PLUGGING	HOT-STUCK RINGS	COLD-STUCK RINGS			
1	ORP1	HSTUK1	CSTUK1			
2	ORP2	HSTUK2	CSTUK2			
3	ORP3	HSTUK3	CSTUK3			
4	ORP4	HSTUK4	CSTUK4			
5	ORP5	HSTUK5	CSTUK5			
6	ORP6	HSTUK6	CSTUK6			
Total		HSTUKT	CSTUKT			
Average	ORPAVG					

A Possible values T = top compression ring B = bottom compression ring O = oil ring N = none

SEQUENCE IIIG FORM 9 SUMMARY OF PISTON DEPOSITS

LAB	LAB	OIL CODE	OILCODE
TEST STAND NO.	STAND	TEST NO.	STAND - STRUN - LABRUN
LABORATORY OIL CODE	LABOCODE		
FORMULATION STAND CODE	FORM		
RATER	APVRATER	RATING DATE	APVRTDT

NOTE: CRC Manual 14 used for ALL Ratings

NOTE: These are unweighted ratings.

	(Grooves, merit	s	Lands,	Undercrown,	
	1	2	3	2	3	merits
Piston 1	G1P1	G2P1	G3P1	L2P1	ORLD1	UCP1
Piston 2	G1P2	G2P2	G3P2	L2P2	ORLD2	UCP2
Piston 3	G1P3	G2P3	G3P3	L2P3	ORLD3	UCP3
Piston 4	G1P4	G2P4	G3P4	L2P4	ORLD4	UCP4
Piston 5	G1P5	G2P5	G3P5	L2P5	ORLD5	UCP5
Piston 6	G1P6	G2P6	G3P6	L2P6	ORLD6	UCP6
WF	0.05	0.10	0.20	0.15	0.30	0.10

NOTE: These are unweighted ratings.

	Piston	Skirt Varnish,	merits	
	Thrust	Anti-Thrust	Average	
Piston 1	PSVT1	PSVA1	PSVAV1]
Piston 2	PSVT2	PSVA2	PSVAV2	
Piston 3	PSVT3	PSVA3	PSVAV3	
Piston 4	PSVT4	PSVA4	PSVAV4	
Piston 5	PSVT5	PSVA5	PSVAV5	
Piston 6	PSVT6	PSVA6	PSVAV6	PSVAVx = (PSVTx + PSVAx)/2 where $x = Number$ of Pisto PSVTAV = average of six Thrust Piston Skirt ratings.
Average	PSVTAV	PSVAAV	APV	PSVAAV = average of six Anti-Thrust Piston Skirt ratings.
WF			0.10	APV = average of all 12 Piston Skirt ratings.

	Total Weighted	
	Deposits, merits	
Piston 1	WPD1	
Piston 2	WPD2	
Piston 3	WPD3	WPD
Piston 4	WPD4	
Piston 5	WPD5	where
Piston 6	WPD6	

PDx=	:(WF*G1Px)+(WF*G2Px)+(WF*G3Px)+(WF*L2Px)+
	(WF*ORLDx)+(WF*UCPx)+(WF*PSVAVx)
ere:	x=Number of Piston
	WF=Appropriate Weighting Factor (WF) for part, from table.

Average Weighted Piston Deposits, merits	WPD	WPD=(WPD1+WPD2+WPD3+WPD4+WPD5+WPD6)/6
--	-----	---------------------------------------

SEQUENCE IIIG FORM 10 BLOWBY VALUES & PLOT

LAB	LAB	OIL CODE	OILCODE
TEST STAND NO.	STAND	TEST NO.	STAND - STRUN - LABRUN
LABORATORY OIL CODE	LABOCODE		
FORMULATION STAND CODE	FORM		

Blowby Plot

BLOWBYIM

Test Hours	BBYTH001	BBYTH006	BBYTH011	BBYTH016	BBYTH021	BBYTH026	BBYTH031	BBYTH036	BBYTH041	BBYTH046
Blowby, L/min.	RLWBH001	BLWBH006	BLWBH011	BLWBH016	BLWBH021	BLWBH026	BLWBH031	BLWBH036	BLWBH041	BLWBH046
Test Hours	BBYTH051	BBYTH056	BBYTH061	BBYTH066	BBYTH071	BBYTH076	BBYTH081	BBYTH086	BBYTH091	BBYTH096
Blowby, L/min.	RLWBH051	BLWBH056	BLWBH061	BLWBH066	BLWBH071	BLWBH076	BLWBH081	BLWBH086	BLWBH091	BLWBH096
Test Hours	BBYTH099	Average								
Blowby, L/min.	RLWBH099	ABLOBY								

SEQUENCE IIIG FORM 11 VISCOSITY INCREASE PLOT

LAB	LAB	OIL CODE	OILCODE
TEST STAND NO.	STAND	TEST NO.	STAND - STRUN - LABRUN
LABORATORY OIL CODE	LABOCODE		
FORMULATION STAND CODE	FORM		

VISINIM

SEQUENCE IIIG FORM 12 HARDWARE INFORMATION

LAB	LAB	OIL CODE	OILCODE
TEST STAND NO.	STAND	TEST NO.	STAND - STRUN - LABRUN
LABORATORY OIL CODE	LABOCODE		
FORMULATION STAND CODE	FORM		

Build Completion Date	BUILDDT	Piston Batch (Code	e)	PISTBAT
Block Serial Number	BLOCKSN	Piston Size (Grade	2)	PISTSIZE
Crankshaft Serial Number	CRANKSN	Piston Ring Batch	Piston Ring Batch Code	
Camshaft Serial Number	CAMSN	Oil Filter Batch Co	ode	OILFIBAT
Cylinder Head Serial Number, Left	LHEADSN	Intake Valve Seals	Batch Code	INVSLBAT
Cylinder Head Serial Number, Right	RHEADSN	Valve Springs Bat	ch Code	VALSPBAT
Bearing Kit Serial Number	BRNGSN		1	LFTR1SN
Top Ring Gap, mils	TRINGGAP		2	LFTR2SN
Bottom Ring Gap, mils	BRINGGAP		3	LFTR3SN
Zowom rung oup, mit			4	LFTR4SN
			5	LFTR5SN
		Lifter	6	LFTR6SN
		Serial Number	7	LFTR7SN
			8	LFTR8SN
			9	LFTR9SN
			10	LFTR10SN
			11	LFTR11SN
			12	LFTR12SN

SEQUENCE IIIG FORM 13 DOWNTIME & OUTLIER REPORT FORM

LAB	LAB	OIL CODE	OILCODE
TEST STAND NO.	STAND	TEST NO.	STAND - STRUN - LABRUN
LABORATORY OIL CODE	LABOCODE		
FORMULATION STAND CODE	FORM		

Downtim	e Occurrences	DWNOCI	
Test Hours	Date	Total Downtime	Reasons
DOWNR00	IDDATR001	DTIMR001	DREAR001
Total	Downtime	TOTLDOW	N Maximum allowable downtime: 24 hours

Other Comments & Outliers TOTCOM

OCOMR001